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Dynamic control of decision and movement
speed in the human basal ganglia

Damian M. Herz 1,2 , Manuel Bange2, Gabriel Gonzalez-Escamilla 2,
Miriam Auer2, Keyoumars Ashkan3, Petra Fischer 4, Huiling Tan1, Rafal Bogacz1,
Muthuraman Muthuraman 2, Sergiu Groppa 2 & Peter Brown 1

To optimally adjust our behavior to changing environments we need to both
adjust the speed of our decisions andmovements. Yet little is known about the
extent to which these processes are controlled by common or separate
mechanisms. Furthermore, while previous evidence from computational
models and empirical studies suggests that the basal ganglia play an important
role during adjustments of decision-making, it remains unclear how this is
implemented. Leveraging the opportunity to directly access the subthalamic
nucleus of the basal ganglia in humans undergoing deep brain stimulation
surgery, we here combine invasive electrophysiological recordings, electrical
stimulation and computational modelling of perceptual decision-making. We
demonstrate that, while similarities between subthalamic control of decision-
andmovement speed exist, the causal contribution of the subthalamic nucleus
to these processes can be disentangled. Our results show that the basal ganglia
independently control the speed of decisions and movement for each hemi-
sphere during adaptive behavior.

Decision-making and motor control are often viewed as distinct pro-
cesses, but in everyday choices the two are inextricably intertwined.
For example, we devalue options that are deemed too effortful to
obtain and adapt both the speedof deliberation andof ourmovements
so as to achieve goals as soon as possible1,2. Even though relatively little
is known about common neural mechanisms underlying decision-
making and movement control, the basal ganglia are thought to
represent a crucial interface between the two1,3,4. In particular, the
subthalamic nucleus (STN) is thought to be a central hub in deter-
mining when deliberation should be terminated and how vigorously a
movement should be performed5,6, as it receives afferents from a
broad spectrum of cortical areas involved in decision-making and
movement control3,7. A prevalent hypothesis is that the STN can hold a
motor response until sufficient evidence is collected or any response
conflict has been resolved thus contributing to response selection and
decision speed8–10. A separate line of researchhas indicated adominant

role of the basal ganglia in modulating movement vigor, in particular
movement speed, determining how quickly a movement should be
performed to indicate the choice1,11–13. These hypothesized roles of the
basal ganglia and STN sharemany commonalities in that they together
determine the time it takes to reach a goal given its expected value4 or
time pressure14, but are typically studied in separate fields (decision-
making and motor control).

It remains unclear to what extent these putative functions of
the STN are controlled separately or by a common signal15. To
address this question, we here recorded STN local field potentials
(LFP) and applied bursts of electrical STN stimulation in patients
with Parkinson’s disease (PD) whilst assessing their ability to make
decisions and perform movements. Based on previous correlative
evidence16–18 we hypothesized that the correlates and causal
contributions of STN to decision speed precede its effect on
movement speed.
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Moreover, we aimed to elucidate the conceptual role of STN
during decision-making. One possibility is that the STN contributes to
the computation of a global decision-threshold construct (i.e., affect-
ing all movement) determining the agent’s general level of cautious-
ness putatively through its connections with the prefrontal cortex5,19,20.
Another possibility is that the STN is involved in setting decision
thresholds at a lower hierarchical level, controlling decision speed for
each hemisphere21,22. To test these possibilities, we applied bursts of
STN stimulation to, respectively, both hemispheres and only one
hemisphere at a time in separate sessions allowingus to assesswhether
the functional lateralization of STN does not only apply to control of
movement17,23–25, but also to decision-making.

Here, we show that the STN can independently controlmovement
and decision speed in distinct processing windows and that it con-
tributes to setting decision thresholds for each hemisphere during
adaptive behavior.

Results
People speed up decisions and movement during time pressure
Thirteen PD patients implanted with deep brain stimulation (DBS)
electrodes (clinical details are listed in supplementary table 1) and 15

healthy, age-matched control participants (HC) performed a percep-
tual decision-making task. Participants had to indicate whether they
perceived that a cloud of moving dots was moving to the left or right
by pressing a dynamometer with their left or right hand after being
instructed to respond as fast (speed instruction) or as accurately
(accuracy instruction) as possible at each trial, see Fig. 1A, B. By
recording force from the dynamometer, response times could be
separated into reaction times (cue tomovement onset) andmovement
times (movement onset to peak force), see Fig. 1C, and these were
compared between speed and accuracy instructions (Fig. 1D). First, we
compared the behavior of the PD group, studied on dopaminergic
medication, and the HC group in detail to address the generalizability
of the results before relating the behavioral adjustments to STN
activity.

We found that speed instructions significantly decreased reaction
times compared to accuracy instructions (95% Bayesian Credible
Interval (CrI) [−0.429:−0.139]) irrespective of Group (main effect of
Group, CrI [−0.101:+0.249]; Instruction*Group interaction (IA), CrI
[−0.152:+0.235]), see Fig. 1E. Similarly, movements were significantly
faster after speed compared to accuracy instructions (CrI
[−0.127:−0.043]), see Fig. 1F. As expected movements were also

Fig. 1 | Experimental setup and behavioral results. a During the task people
indicatedwhether a cloudofmoving dots (8% coherence)moved to the left or right
by pressing a dynamometer with their left vs. right hand. In patients with Parkin-
son’s disease (PD) electrode extension cables from the subthalamic nucleus
enabled both recordings of local field potentials and stimulation. BDuring the task
patientswere instructed to respond as fast (deadline: 2s) or as accurately (deadline:
3s) as possible at each trial in randomized order. C Force recordings allowed the
subdivision of response times into reaction times (from onset of moving dots cue
(1) to onset of movement (2)) and movement time (from 2 to peak force (3)).

D Examples of trial-averaged force recordings are shown separately for speed
(green) and accuracy (black) trials for one healthy control (HC) participant and one
PD patient. E Single participant mean reaction times for speed (y axis) vs. accuracy
trials (x axis). The posterior density of the effect of instruction is shown in the inset.
PD patients (n = 13) are shown as black circles, HC participants (n = 15) as blue
circles. F Same as E but for movement times. G Posterior density of the regression
coefficient of movement times on reaction times. Source data are provided as a
Source Data file.
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significantly faster in healthy people compared to PD patients (CrI
[−0.717:−0.189]), but there was no Instruction*Group IA (CrI
[−0.011:+0.100]) indicating that both groups adjusted their move-
ments to a similar extent. Similar to our previous observations16 PD
patients had lower accuracy rates compared to healthy people (~65%
vs. ~75%, change in log-odds CrI [+0.068:+1.051]). Importantly there
was no Instruction*Group IA (CrI [−0.411:+0.299]), i.e., accuracy rates
were not differently affected by instructions in PDpatients and healthy
controls, and all participants performed above chance level. Accuracy
rates were not significantly different between speed and accuracy
instructions (CrI [−0.349:+0.176]), but participants committed errors
disproportionately faster after speed vs. accuracy instruction as indi-
cated by a significant Instruction*response accuracy IA on reaction
times (CrI [+0.042:+0.223]), which did not differ between groups.
Notably, relatively faster errors after speed instructions indicate that
these were due to lower levels of evidence at the time of the choice
rather than higher levels of sensory noise26. There were no effects of
Instruction or Group on peak force. Furthermore, we did not find
differences in movement times depending on the response side (left
vs. right) or response accuracy, nor didmovement times increase with
the duration of the experiment indicating that the participants were
not affected by fatigue during the short task (see supplementary
table 2 for the 95% Bayesian CrI and non-Bayesian confidence intervals
(CI), t- and p-values of all statistical tests, supplementary table 3 for
results when only including correct trials and supplementary table 4
when using non-log-transformed single-trial data).

We then asked whether the observed changes in reaction and
movement times were related to each other using movement times at
each trial as the independent variable and reaction times as the
dependent variable in a regression analysis. This analysis showed a
significantly negative slope, i.e., faster movements were related to
longer reaction times (CrI [−0.099:−0.002]), see Fig. 1G. This rela-
tionship was not affected by Group or Instruction (Movement time*-
Group IA CrI [−0.050:+0.080], Movement time*Instruction IA CrI
[−0.052:+0.034], Movement time*Group*Instruction IA CrI
[−0.019:+0.087]).

Together, these findings revealed that participants both
decreased their reaction and movement times during time pressure
and that these changes were similar in PD patients and healthy peo-
ple. Furthermore, at the single-trial level longer reaction times were
related to faster movements and this relationship did not differ
depending on the group or instructions. Next, we attempted to gain a
better understanding of these findings by modeling the latent
changes in decision-making parameters underlying the observed
behavior.

People speedupdecisions by lowering the evidence required for
a choice
We used a well-known, parsimonious model termed the drift-diffusion
model (DDM) that has been successfully applied to a range of decision-
making tasks26 and contains three main parameters: the decision
threshold, which determines how much evidence people require
before committing to a choice, the drift rate reflecting the rate of
evidence accumulation and the non-decision time incorporating pro-
cesses not directly related to decision-making (such as afferent delay
or motor preparation, see Fig. 2A and methods for more details).
Including an additional parameter reflecting the starting point of evi-
dence accumulation (bias) did not alter any of the reported results.
Using a Bayesian hierarchical DDM (HDDM)27 we first fitted a model
allowing modulations of all parameters by Instruction and Group. We
found that speed vs. accuracy instructions significantly reduced deci-
sion thresholds (CrI [−0.398:−0.119]), see Fig. 2B, but did not affect
drift rates (CrI [−0.251:+0.238]) or non-decision times (CrI
[−0.128:+0.053]). There were main effects of Group on decision
thresholds (PD >HC, CrI [+0.054:+0.324]), drift rates (PD <HC, CrI
[−0.622:−0.131]), and non-decision times (PD <HC, CrI
[−0.415:−0.238]). Importantly, however, there were no IA of Group*-
Instruction on any of the parameters (decision thresholds CrI
[−0.346:+0.199], drift ratesCrI [−0.479:+0.496], non-decision timesCrI
[−0.104:+0.259]) showing that PD patients adjusted their decision-
making parameters based on instructions similarly to healthy people,
as already suggested by the behavioral analysis.

In a next step, we aimed to assess whethermodulations of distinct
decision-making parameters could explain the observed trial-by-trial
relationship between movement and reaction times. To this end we
first constructed a model that only contained the significant Instruc-
tion effects from the previous model (i.e., on decision thresholds) for
eachgroup. This simplemodel predicted the observed data of both PD
patients and healthy people well (supplementary Fig. 1). Then we
included single-trial estimates of movement times as independent
variable in the HDDM regression model. In both groups, we found a
significant negative relationship between movement times and deci-
sion thresholds (HC CrI [−0.094:−0.004], PD CrI [−0.110:−0.011]), see
Fig. 2C, but no IA with Instruction (HC CrI [−0.010:+0.100], PD CrI:
[−0.035:+0.115]), nor any relationship with drift rates (HC CrI
[−0.022:+0.079], PD CrI [−0.089:+0.022]) or non-decision times (HC
CrI [−0.005:+0.010], PD CrI [−0.002:+0.003]).

In summary, we found that the observed reduction in reaction
time during speed vs. accuracy instructions could be parsimoniously
explained by a decrease in the decision threshold allowing responses
at lower levels of sensory evidence. Trial-by-trial variations in

Fig. 2 | Hierarchical drift-diffusion modeling (HDDM). a The main parameters of
themodel are the non-decision time t, the drift rate v, and the decision threshold a
determining when sampled sensory evidence (gray trace) results in a choice that is
correct (upper boundary) or incorrect (lower boundary). Faster decision during
speed pressure can be implemented through a reduction of a (shown in green).
B Both Parkinson’s disease (PD) patients and healthy controls (HC) had lower
decision thresholds after speed compared to accuracy trials.C Posterior density for

regression of movement times on decision thresholds for HC and PD.D Schematic
representation of the main findings from the behavioral and computational ana-
lyses showing the intrinsic relationship between movement times and decision
thresholds (arrowmarked DT~MT) as well as their shift to lower values after speed
instructions (arrow from accuracy to speed). The black and green clouds represent
distributions of movement times and decision thresholds during, respectively,
accuracy and speed instructions.

Article https://doi.org/10.1038/s41467-022-35121-8

Nature Communications |         (2022) 13:7530 3



movement times were specifically related to changes in the decision
threshold,while therewasno relationshipwith changes in drift rates or
non-decision times. This suggests that when people required more
evidence for their choice, they then indicated this choice by a faster
movement. Speed vs. accuracy instruction did not alter this relation-
ship (i.e., the slope), but shifted it toward overall lower decision
thresholds and shorter movement times, as schematically illustrated
in Fig. 2D.

STN reflects adjustments of decision- and movement speed in
distinct windows
During the task we recorded LFP directly from the STN through tem-
porarily externalized DBS electrodes in PD patients. This allowed us to
analyze whether STN activity changes were related to the observed
adjustments in decision time, movement time, or both.

After onset of themoving dots cue the strongest changes in STN
activity were observed in the beta band (~13–30Hz) which showed a
sharp reduction in power immediately after the cue (Fig. 3A) and was
lower in the contralateral compared to the ipsilateral hemisphere
(supplementary Fig. 2A). Across trials beta power after the onset of
the moving dots cue (Betacue) decreased more strongly after speed
compared to accuracy instructions (CI [+0.006:+0.246], P = 0.041).
This remained significant when excluding any motor responses that

fell into this time window (CI [+0.015:+0.266], P = 0.031) and when
comparing beta at the trough after the cue rather than computing the
pre- vs. post cue difference (CI [−0.002:−0.212], P = 0.046), demon-
strating that the stronger beta power drop after speed instructions
was neither driven by early movement responses nor baseline dif-
ferences in the pre-cue period. At the single-trial level a stronger
decrease in beta power was predictive of shorter reaction times (CrI
[−0.120:−0.033]), but not of changes in movement times (CrI
[−0.014:+0.027]). These results were robust to adjusting the exact
baseline period used for extracting beta power (supplementary
table 5). Entering single-trial values of Betacue into HDDM revealed a
significant negative relationship with decision thresholds (CrI
[−0.162:−0.020]); the stronger Betacue decreased the lower were
decision thresholds, irrespective of Instruction (Betacue*Instruction
IA CrI [−0.047:+0.142]). It was not related to changes in drift rate (CrI
[−0.087:+0.053]) or non-decision times (CrI [−0.005:+0.002]). These
results are illustrated in Fig. 3B.

Next,weanalyzed changes inSTNactivity in relation tomovement
onset where there was a strong decrease in STN beta activity (Fig. 3C),
which was lower in the contralateral compared to the ipsilateral
hemisphere (supplementary Fig. 2B). Beta power during the move-
ment (Betamove) was slightly lower during speed compared to accuracy
instructions, but this did not reach significance (CI [−0.073:+0.010],

Fig. 3 | Local field potential recordings from subthalamic nucleus. a Grand
average for spectra aligned to the moving dots cue. B Results for cue-aligned
changes in beta (~13–30Hz) power (Betacue) measured as change in beta power
from precue (300–100ms precue) to post cue (320–400ms post cue) across
participants (n = 13). C Grand average for spectra aligned to movement onset.
D Results for movement-related (0–300ms post-movement) changes in beta

power (Betamove) across participants (n = 13). In B and D shaded areas around %
power change (green: speed; black: accuracy) represent SEM and gray vertical
boxed indicate time windows from which power was extracted. Green and black
vertical lines in B indicatemean reaction time for speed and accuracy trials. Source
data are provided as a Source Data file.
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P = 0.127). However, its by-trial effect on movement times differed
after speed vs. accuracy instructions (CrI IA [+0.010:+0.069], CrI of
main effect [−0.015:+0.026]). Post hoc tests revealed that lower single-
trial values of Betamove were predictive of shorter movement times
after speed instructions (CrI [+0.020:+0.068]), see Fig. 3D, but not
after accuracy instructions (CrI [−0.018:+0.025]). Changes in Betamove

were not related to changes in reaction times (CrI of main effect
[−0.033:+0.051], CrI Betamove*Instruction IA [−0.089:+0.033]).

Finally, based on previous studies16–18,20,28, we analyzed cue-
aligned theta (4–8Hz) power and movement-aligned gamma
(55–80Hz) power. Replicating these previous studies we found that
theta power correlated with reaction times and decision thresholds
depending on instructions, but not with movement times, and that
movement-related gamma power correlated with movement speed,
but not reaction times (supplementary Fig. 3).

In summary, we found that STN beta activity was related to both
adjustments of reaction times and movement during speed vs. accu-
racy instructions. Beta power after the cue decreased more strongly
after speed instructions and trials with a stronger decrease were rela-
ted to shorter reaction times and lower decision thresholds, but not
movement speed. In contrast, beta power during the movement pre-
dicted faster movements when speed was emphasized, but had no
relationship with reaction times. Thus, modulation of beta power
reflected the shift to lower decision thresholds and faster movements
when speed was emphasized, but over different time windows. The
temporal independence of this modulation of reaction times and
movement by STN beta power was further corroborated by the lack of
correlation between Betacue and Betamove (CrI [−0.099:+0.032]).

Next, to assess whether the STN is causally involved in adjust-
ments of decision- and movement speed we applied bursts of stimu-
lation to the STN during the same experimental task in a second
session.

STN causally controls decision- and movement speed in sepa-
rate windows
To disentangle timing-specific effects of STN on the observed
behavioral adjustments we applied short bursts of clinically effective

DBS (mean duration: 250ms, see Fig. 4A) to STN in both hemi-
spheres, which were ramped up and down (ramping was defined as
no stimulation, see methods). Burst duration and interval were con-
trolled so that for any given 100ms time window during the task
stimulation was applied in ~50% of trials (Fig. 4B). We then compared
trials with and without stimulation regarding their effects on
adjustments of reaction times andmovement using a sliding window
approach and performed cluster-based permutation tests to correct
for multiple comparisons across all time windows (see methods for
more details).

We found that stimulation impaired reaction time adjustments
between speed vs. accuracy trials in a temporally confined window
from 180-10ms before cue onset (Pcluster < 0.05), which we hereafter
refer to as DBSRT (see Fig. 4C for group and single subject effects). DBS
in this time window did not significantly alter accuracy rates (CI
[−0.093:+0.111], P =0.848). Post hoc tests showed that stimulation
reduced reaction times during accuracy trials (CI [−0.119:−0.025],
Pcorrected = 0.014), while the increase in reaction times during speed
trials did not reach significance (CI [ + 0.003:+0.126], Pcorrected =
0.084), see Fig. 4D. This was confirmed by HDDM showing a sig-
nificant reduction of decision thresholds in accuracy trials (CrI90
[−0.243:−0.003]), while the change was not significant in speed trials
(CrI90 [−0.110:+0.088]). In a control analysis, we defined incremental
periods of the ramping period as stimulation, since it is conceivable
that DBSmight have effects on reaction time adjustments at intensities
that are lower than clinically effective stimulation, i.e., during ramping.
This analysis demonstrated that effects of DBSRT were robust to
changes in the exact definition of effective stimulation (supplementary
table 6). DBSRT also remained significant when only including correct
trials (CI [−0.260:−0.035], P = 0.016).

Movement speed adjustments were affected by stimulation in a
different time window occurring later, from 330–460ms after cue
onset (Pcluster < 0.05, Fig. 4E), which we hereafter refer to as DBSMT.
Post hoc tests showed that this was mainly driven by an effect
of stimulation on movement speed after accuracy instructions redu-
cing movement times (Fig. 4F), but the post hoc effects did not reach
significance after correction for multiple comparisons in either

Fig. 4 | Behavioral effects of bilateral burst stimulation. a Bursts were given at
random time points throughout the experiment. B This resulted in stimulation
occurring on ~50% of trials for any 100ms moving time window. C Stimulation
impaired patients’ ability to adjust reaction times in a time window confined to
180–10ms precue (DBSRT), which is marked by an ‘*’ (corrected for multiple com-
parisons using cluster-based permutation tests and two-sided alpha-level of 0.05).
Single-subject responses (n = 10) to DBSRT are shown in the panel to the right.
D DBSRT effects shown for each participant (n = 10) separately for accuracy (black)

and speed trials (green). E Stimulation impaired patients’ ability to adjust move-
ment times in a separate timewindow (330–460mspost cue,DBSMT)markedby an
‘*’ (corrected for multiple comparisons using cluster-based permutation tests and
two-sided alpha-level of 0.05). Single-subject responses (n = 10) to DBSMT are
shown in the panel to the right. FDBSMT effects shown for each participant (n = 10)
separately for accuracy (black) and speed trials (green). Shaded areas in B, C and
E represent SEM. Source data are provided as a Source Data file.
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condition (Accuracy: CI [−0.026:−0.001], Pcorrected = 0.083; speed: CI
[−0.006:+0.027], Pcorrected = 0.338).

Stimulation effects on reaction and movement times, respec-
tively, in the two different time windows were not correlated across
subjects (rho = −0.042,P =0.908, Pearson correlation).Wedidnotfind
any effects of stimulation when aligning the data to movement onset
(supplementary Fig. 4).

Together, these results demonstrate that the STN is causally
involved in the observed behavioral adjustments and that changes in
reaction andmovement times are controlled independently in distinct
temporal windows. These two-time windows are similar to those in
which STN beta power changes were associated with adjustments in
reaction and movement times. To assess more directly whether the
applied bursts of STN stimulation affected the dynamical modulation
of beta power29–32, we compared task-related changes in STN beta
power on and off stimulation.

STNstimulation interfereswith dynamic changes in beta activity
During stimulation, we simultaneously recorded STN activity from
bipolar contacts surrounding the stimulation electrode. Using
common-mode rejection, filtering and artifact removal (see methods
for more details), we were able to recover the dynamic changes in
beta power observed without stimulation across all trials (i.e.,
reduction in beta power after the cue and during themovement), see
Supplementary Figs. 5, 6. Aligning beta power to stimulation onset
showed a strong stimulation-related reduction in beta power (sup-
plementary Fig. 7) as expected from the previous studies29–32. To
analyze whether DBSRT and DBSMT also were accompanied by
stimulation-induced beta power reductions, we compared trials with
stimulation vs. no stimulation in the two-timewindows aligned to cue
onset (Fig. 5A, see methods for more details). DBSRT reduced beta
power from 100ms pre cue to 60ms post cue (Pcluster < 0.05), see
Fig. 5B. DBSMT reduced beta power from 320–460ms post cue
(Pcluster < 0.05), see Fig. 5C. Thus, the timing-specific behavioral
effects of stimulation were accompanied by reductions in STN
beta power.

While the neural control of movement in the basal ganglia is
well-known to show strong lateralization17,18,23–25, how the basal
ganglia control decision speed is less clear. To assess whether STN
control of decision thresholds is global (i.e., affects both body
sides) or the STN controls decision speed mainly for the con-
tralateral body side similar to its effect on movement, we applied
bursts of STN stimulation to one hemisphere at a time during the
final part of the study.

STN controls decision speed for each hemisphere
In a final session, patients performed the experimental task whilst STN
stimulationwas appliedunilaterally (left and right STNwere stimulated
in consecutive runs with counterbalanced order, see methods). This
allowed us to distinguish trials where the STN contralateral to the
moving hand was stimulated (Fig. 6A) from trials where the ipsilateral
STN was stimulated (Fig. 6D).

When stimulating the STN contralateral to the moving hand we
found a significant effect on reaction times in an almost identical time
window to the significant behavioral effects of bilateral stimulation,
i.e., 230–40ms before cue onset (Pcluster < 0.05, hereafter termed
DBScontra), see Fig. 6A, which significantly reduced decision thresholds
(CrI [−0.302:−0.017], Fig. 6B). DBScontra remained significant when
only including correct trials (CI [−0.272:−0.035], P = 0.018). As for
bilateral stimulation, we conducted a control analysis defining
incremental periods of the ramping period as stimulation, which
demonstrated that the effects of DBScontra were robust to changes in
the exact definition of effective stimulation (supplementary table 6).
DBScontra didnot significantly affect accuracy rates (CI [−0.075:+0.102],
P =0.729) and, contrary to bilateral stimulation, the effect on
reaction times did not differ between speed vs. accuracy trials
(CI [−0.102:+0.270], P =0.320).

There were no significant effects on reaction times when stimu-
lating the STN ipsilateral to the effector (Pcluster > 0.05, Fig. 6D) and
ipsilateral stimulation did not affect decision thresholds (CrI
[−0.199:+0.069], Fig. 6E). The effect of contralateral stimulation on
reaction time was significantly stronger than ipsilateral stimulation in a
direct comparison albeit only using a one-tailed test (Pone-tailed = 0.042).
Thus, unilateral stimulation increased decision speed by lowering the
decision threshold only for the contralateral body side. This suggests
that the behavioral effects during bilateral stimulation were mainly
driven by the contralateral STN. If so, this would predict that across
subjects, people who had stronger behavioral effects of bilateral sti-
mulation also should show strong effects after contralateral stimula-
tion and vice versa, while this should not hold true for ipsilateral
stimulation. Of note, since the same contacts were stimulated during
contra- and ipsilateral stimulation any differences could not be
explained by differences in lead localization or stimulation efficacy. In
line with our prediction, we found that the effect on reaction times
during DBScontra significantly predicted the behavioral effect we had
observed during bilateral stimulation (r2 = 0.63, Pcorrected = 0.037), see
Fig. 6C, while this was not the case for ipsilateral stimulation (r2 = 0.18,
Pcorrected = 0.574), see Fig. 6F. The relationship between contra- and
bilateral stimulation remained significant when using both unilateral

Fig. 5 | Local field potential recordings during stimulation. a Beta power is
aligned to cue onset. B Cue-aligned beta power for trials where stimulation was
applied during DBSRT (red) compared to trials where stimulationwas not applied in
DBSRT (termed No-DBSRT, black) averaged across participants (n = 10). Significant
differences according to cluster-based permutation tests are marked by red bars

with a *. C Same asB, but for DBSMT vs. No-DBSMT. Note that the shown beta traces
are not affected by movement-related beta power reductions and that the data
were normalized to the mean across the whole recording (see methods). Shaded
areas represent SEM.
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stimulation conditions as predictors in a multiple regression
model (P =0.043).

In a final analysis, we assessed how STN beta power was altered by
unilateral stimulation. We hypothesized that the stimulated STN, but
not the non-stimulated STN, should show a similar reduction in beta
power as observed during bilateral stimulation, since it was sufficient
to yield behavioral changes. In line with this prediction, we found that
timing-specific stimulation (DBScontra) significantly reduced STN beta
power compared to the non-stimulated hemisphere from 120 to 40ms
precue (Pcluster < 0.05), see Fig. 6G.

Discussion
What determines the speed with which we think and act? We slow
down movement and decision speed when we are uncertain about
outcomes33, move faster toward things that we value more4, or when
facing time pressure14. In this study, we reveal correlates of decision
andmovement speed in the STN, a central part of thebasal ganglia that
has long been thought to constitute a crucial interface between
decision-making and movement control1,3,4. We demonstrate that STN
activity, as reflected by oscillations in the beta band that mainly loca-
lize to the dorsolateral STN24,34,35, can reflect both decision and
movement time, but in temporally separate time windows and statis-
tically independent from each other. We further demonstrate the
mechanistic importance of STN activity changes by applying bursts of
electrical stimulation to the STN. Burst stimulation affected adjust-
ments of decision and movement speed but only when applied in
critical, separate time windows. Thus, DBSRT reduced reaction time
whilst simultaneously augmenting the initial task-dependent drop in

beta power. The results from trials without stimulation confirmed that
stronger early drops in beta power were indeed associated with
shorter reaction times and lower decision thresholds. In contrast, sti-
mulation applied ~400ms after the cue (DBSMT) reduced movement
time. This was accompanied by a correspondingly stronger suppres-
sion of beta power, over and above that seen in the unstimulated
condition. The latter confirmed that lower beta power was associated
with shorter movement times, albeit mostly in the speed condition.

Modulations of beta power during decision-making and motor
control have also been reported at the cortical level in healthy
participants36–38. Together with the observation that patients’ beha-
vioral adjustments during the task were similar to those of healthy
people, this suggests that our results may generalize beyond the stu-
died patient population even though we cannot conduct direct elec-
trophysiological STN recordings in healthy people.

We also found a negative correlation between decision thresholds
and movement time. The more evidence people accumulated the
faster were their movements to indicate the choice irrespective of
instructions. This is compatible with the observation that choices with
higher levels of certainty are accompanied by faster movement33.
However, this relationship could also be driven by better movement
preparation during longer reaction times. The lack of a correlation
between Betacue and Betamove indicates that the context-independent
relationship between decision thresholds and movement times might
be related to other spectral components or neural circuits outside
the STN.

In sum, our results confirm previous findings showing STN cor-
relates of decision thresholds16,20 and movement speed17,18,23 and

Fig. 6 | Unilateral stimulation. a Trials were divided into contralateral stimulation
(e.g., left-handed response during stimulation of right STN) and ipsilateral stimu-
lation (e.g., right-handed response during stimulation of right STN, shown in D).
Contralateral stimulation reduced reaction times ina timewindow from230–40ms
pre cue (compare to Fig. 4C). Single participant (n = 8) responses for this time
window (DBScontra) are shown in the right panel. B DBScontra significantly reduced
decision thresholds. C Across subjects (n = 8), the behavioral effect of contralateral
stimulation on reaction times predicted the effects of bilateral stimulation on
reaction time changes (predicting ~67% variance, regression slope illustrated by
black line, 95% CI shown by dotted lines). D During ipsilateral stimulation no sig-
nificant effects on reaction times were observed across subjects (n = 8, corrected

for multiple comparisons using cluster-based permutation tests and two-sided
alpha-level of 0.05). Single participant (n = 8) responses from the same time win-
dow as above, i.e., 230–40ms precue, (here termed DBSipsi) are shown in the right
panel. E DBSipsi did not affect decision thresholds. F Across subjects (n = 8), the
behavioral effects of ipsilateral stimulation did not predict the effects of bilateral
stimulation (regression slope illustrated by black line, 95% CI shown by dotted
lines). G Cue-aligned changes in beta power for the stimulated STN (during
DBScontra, red) and the non-stimulated STN (black) averaged across participants
(n = 8). The red bar with a * in the right panel indicates significant differences
between stimulated and non-stimulated STN. Shaded areas inA,D, andG represent
SEM. Source data are provided as a Source Data file.
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significantly extend these by showing that they can be controlled
independently allowing the STN, presumably together with its inter-
connected networks, to flexibly control behavior. While this enables
the agent to adapt deliberation and movement together, e.g., for
minimizing the time it takes to achieve a goal1, it still retains the flex-
ibility to reduce one but not the other, e.g., when deliberation time can
be sacrificed during relatively easy decisions, but the goal can only be
reached with intricate, slower movement39. More broadly our results
are in line with the basal ganglia determining when to commit to a
choice8–10 (decision speed) and how vigorously to indicate the
choice1,11–13 (movement speed) in distinct processing windows.

Another key finding from this study is that, similar to the later-
alized control of movement in the STN17,23–25, its effect on decision
speed is related to choices indicated with the contralateral, but not
ipsilateral, hand. While our previous study demonstrated a causal
contribution of STN to decision threshold adjustments according to
by-trial changes in task difficulty40, the current study confirmed that
this also extends to decision threshold adjustments driven by trial-by-
trial changes in time pressure and elucidated a strong lateralization of
this effect. The latter is in linewith recent evidence showing thatmotor
cortex influences decision cautiousness of the contralateral body side
in humans22 and that optogeneticmanipulationof thebasal ganglia can
bias perceptual decisions to the contralateral vs. ipsilateral side in
rodents21. Interestingly, while bilateral stimulation affected reaction
times depending on task context by mainly speeding up decisions
during the accuracy condition, contralateral stimulation reduced
reaction times irrespective of condition. This suggests that context-
specific decision threshold adjustment might require the controlled
activation of bilateral STN.

Together, the results suggest that the STN might primarily be
involved in threshold adjustments at a lower hierarchical level. More
precisely, while cortical computations might primarily determine a
higher-order, “global” decision threshold determining how cau-
tiously an agent generally (i.e., irrespective of the exactmovement or
body side) behaves depending on task context, risk and control
demands14,41, at the level of the basal ganglia this appears to be spe-
cific to each hemisphere (here controlling left vs. right hand
movement).

There are some limitations to this study. First, due to the rapid
ON-OFF cycling of burst stimulation subthalamic neurons might not
have reached a stable baseline in the stimulation interval despite
ramping down and the interval might thus constitute a post-
stimulation rather than an off-stimulation condition32,42. Further-
more, we here titrated stimulation intensity to clinically effective sti-
mulation, i.e., DBS intensities that resulted in motor improvement.
However, it could be that DBS might already affect decision processes
at lower intensities43. We addressed this to some extent by including
incremental periods of the rampingperiod as stimulation showing that
the results were robust to changing the exact definition of stimulation
vs. no stimulation. Future studies could address these issues by
focusing stimulation bursts on pre-definedwindows of interest at each
trial (leaving several seconds off stimulation) and assessing the effect
of different stimulation intensities on cognitive and motor processes.
Finally, we used a well-validated task for probing the speed-accuracy
trade-off. However, it has been shown that this task evokes much
stronger changes in reaction times than accuracy rates16,26,40. While
analysis of error reaction times and computational modeling con-
firmed that the changes between conditions were best explained by a
reduction of the decision threshold, future studies could use para-
digms that are more sensitive to effects of decision speed on
choice accuracy. It remains to be elucidated to what extent DBS-
mediated interruptions of decision-making processes are related
to impulsiveness, which is observed during conventional DBS in
some PD patients44,45 and might be avoidable using adaptive DBS
approaches46,47.

Methods
Sample size
Before conducting the study we recorded pilot data from 12 healthy
people performing the same experimental paradigm (described
below). Our main focus was the effect of speed vs. accuracy (SAT)
instructions on reaction and movement times. We used G*power48 to
estimate the necessary sample size for a significant effect of SAT
instructions on these two parameters and found an effect size of
dz = 2.3 for reaction times and 1.2 for movement times for a paired
comparison. Given an alpha of 0.05 and power of 0.9 this resulted in a
required sample size of n = 10 for the lower effect size (move-
ment times).

Due to the invasive nature of STN recordings andDBSwewere not
able to record pilot data for computing the effect size of STN LFP
changes or DBS effects. However, given the very good signal-to-noise
ratio of invasive STN LFP recordings with a typical sample size of
~1016,18,20 and the large effect size of previous studies testing DBS
effects during perceptual decision-making (dz ~1.849 and ~2.440) we
considered the sample size estimation based on the behavioral mea-
sures appropriate. To also allow for possible drop-outs we opted to
include 15 participants.

Participants
Fifteen patients with PD, who had undergone STNDBS surgery prior to
the experimental recordings, were recruited at two DBS centers; Uni-
versity Medical Center at the Johannes Gutenberg University Mainz,
Germany (n = 13), and King’s College Hospital London, UK (n = 2). See
supplementary table 1 for clinical details. Lead localization was verified
bymonitoring the clinical effect and side effects during the operation,
as well as through postoperative stereotactic computerized topo-
graphy (CT), see supplementary Fig. 8. Recordings of bilateral STN LFP
and DBS were performed through the externalized electrode exten-
sion cables and took place in the immediate postoperative period
1–3 days after electrode insertion, before implantation of the sub-
cutaneous pulse generator. All patients were tested on their normal
dopaminergic medication. Previous studies have shown that decision
thresholds are not affected by dopaminergic medication in healthy
people50 or PD patients51 and that medicated PD patients show similar
adaptations of decision-making parameters during the SAT as healthy
people16. To further confirm that patients’ behavioral adjustments
during the SAT were comparable to those of HC participants we
enrolled 15 people without any neurological or psychiatric conditions.
The two groups were matched for age (PD: mean 67.4 years, range:
49–79; HC: mean 67.5 years, range: 57–81; P =0.982, independent
samples t test), handedness (1 left-handed person in each group as
revealed by self-report, P = 1, Fischer’s exact test) and gender (13 male
in PD group, 10 male in HC group, P =0.39, Fischer’s exact test). In
accordance with the declaration of Helsinki, all participants gave
written informed consent to participate in the study, which was
approved by the local ethics committees (State Medical Association of
Rhineland-Palatinate and Oxfordshire REC A). One of the included PD
patients (PD13) dropped out of the study because of post-operative
fatigue. Another patient (PD09) was not included in the LFP analysis,
because prior to this surgery he already had DBS electrodes implanted
in the thalamus (ventral intermediate nucleus) for tremor-dominant
PD, which evoked artifacts in the STN electrodes. In total, 13 patients
performed the first session and 10 patients (see supplementary table 1)
participated in the second session with STN burst stimulation
(see below).

Experimental task
We used a moving dots task probing the SAT, see Fig. 1A, B. Cues were
presented on aMacBook Pro (MacOSMojave, version 10.14.6, 13.3 inch
display, 60Hz refresh rate) using PsychoPy v1.852 implemented in
Python 2. The display was viewed from a comfortable distance of
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~50 cm. At the beginning of each trial a text cue indicated whether
participants should respond as quickly (English: “Fast!”; German:
“Schnell!”) or as accurately as possible (English: “Accurate!”; German:
“Akkurat!”) for an average duration of 1 s (randomly jittered between
0.75 and 1.25 s) in randomized order. Then, a cloud with a diameter of
14 cm that consisted of 200 randomly moving white dots (dot size: 10
pixels) was shownon a black background. Each dotmoved in a straight
line at a rate of 0.14mm per frame for 20 frames before moving to
another part of the cloud where it moved in a new direction chosen
pseudorandomly between+180degrees and−180degrees. Since8%of
the dots moved coherently in one direction, while the remaining dots
weremoving randomly, the cloud of dots appeared tomove to the left
or right. Participants were instructed to respond with their right hand
when and if they perceived that the cloud was moving to the right and
with their left hand when and if they perceived a leftward movement.
The trial was terminated by a response or after a fixed deadline, which
was set at 3 s for accuracy trials and 2 s for speed trials. This was fol-
lowed by immediate visual feedback, which was shown for 500ms.
During accuracy instructions “incorrect” (German: “falsch”) was shown
as feedback both for errors of commission and errors of omission,
while “correct” (German: “richtig”) was shown for all correct trials.
During speed instructions “in time” (German: “rechtzeitig”) was shown
for all responses within the 2 s window, while “too slow” (German: “zu
spaet”) was shown if patients did not respond within the deadline.
Responses were indicated by pressing a hand grip dynamometer (MIE
Medical Research, Leeds, U.K.), which the participants held in each
hand with their forearm comfortably positioned on the armrest of the
chair. The analog force measurements were analog-to-digital con-
verted and sent to the PsychoPy software through a labjack u3 system
(Labjack Corporation, Lakewood, CO, USA) as well as to the LFP
recording device (TMSi porti, see below). When the grip force excee-
ded a fixed threshold set at ~20 Newton a responsewas triggered. This
threshold was perceived as relatively effortless and at the same time
prevented triggering of involuntary responses, e.g., by tremor. When a
response was triggered a TTL pulse was sent from Psychopy to the
recording software through the labjack systemso that task eventswere
synchronized with the force and LFP recordings (as well as DBS bursts
in the second experiment, see below). One session consisted of 200
trials and lasted ~ 10minutes. All participants practiced the task for 40
trials before commencing the recordings.

Analysis of behavioral data
All trials without responses (errors of omission), more than one
response (i.e., if participants pressed the grippers twice in a trial), and
response times <0.25 s were excluded16. For each trial the beginning of
the force exertion was marked manually where a clear offset from
baseline was visible at a fixed temporal resolution (1 s/inch) and blin-
ded to trial type. We also applied an automatic movement onset
detection algorithm where the onset was marked when the force
crossed a pre-defined threshold. This threshold was defined as base-
line (1 s to 0.5 s before the response was triggered) + 5* standard
deviation of the baseline. Since the automatic detection led to incor-
rect onset detection in some trials, in particular in patients with action
tremor (see supplementary Fig. 9), we used a manual definition of
movement onset for this study. However, both methods led to similar
movement time estimates (rho = 0.637, P < 0.0001, Pearson correla-
tion). The following variableswere computed: Reaction times (onset of
moving dots cue until beginning of movement), movement times
(beginning ofmovement until peak force), peak force (maximum force
subtracted by baseline force) and response accuracy, see Fig. 1C, D.

Statistical analyses were conducted using hierarchical Bayesian
regression models (linear mixed models) implemented in R-Stan
(v2.21.2, https://mc-stan.org) using the rethinking (v2.13, https://
github.com/rmcelreath/rethinking) and rstanarm (v2.21.1, https://mc-
stan.org/rstanarm) packages. Single-trial values of reaction times,

movement times and peak force of each subject j were log-
transformed (because of their skewed distribution) and assumed to
be drawn from a normal distribution with mean μj and standard
deviation σ. Raw and log-transformed data are shown in supplemen-
tary Fig. 10 and results did not change when using non-log-
transformed data (supplementary table 4). In each model we esti-
mated the effectof Instruction (speed vs. accuracy),Group (PDvs.HC),
and their interaction (IA) on the dependent variable:

μj = β0j +β1j*Instruction +β2*Group+ β3*Instruction*Group ð1Þ

All parameters were assumed to be drawn from normal distribu-
tions. To test whether Instruction affected reaction times depending
on response accuracy we included this predictor along with the pre-
dictors from model (1) in an additional regression model.

We also conducted two control analyses to assess whether
movement times were affected by response side or by fatigue
throughout the experiment and whether this differed between groups
(here shown for response side):

μj =β0j +β1j*Instruction+ β2*Group+β3j*Response side

+β4*Instruction*Group+β5*Response side*Group
ð2Þ

Response accuracy at each trial was modeled as a binary dis-
tribution that a trial was correct (1) with probability p and the effects of
Instruction, Group, and their IA were estimated as follows:

logitðpÞ=β0j + β1j*Instruction+β2*Group+β3*Instruction*Group ð3Þ

where logit(p) reflects the log-odds ratio that a trial is correct.
Finally, we assessed a putative relationship between reaction

times and movement times at the single-trial level. We used reaction
times as the dependent variable and included the z-scored single-trial
movement times values along with Instruction and Group as pre-
dictors. Since we found it conceivable that the relationship between
movement times and reaction timesmight depend both on Group and
Instruction, we included all IA:

μj =β0j + β1j*Instruction+β2*Group

+β3j*movement times +β4*Instruction*Group

+β5*movement times*Group+β6*movement times*Instruction

+β7*movement times*Instruction*Group

ð4Þ

Weused non-informative priors in all models. All scripts including
the priors are available on https://data.mrc.ox.ac.uk 53. For eachmodel,
3 Markov Chain Monte Carlo (MCMC) chains were run using 5000
iterations each of which the first 500 were discarded as burn-in. Con-
vergence was assessed using the Gelman-Ruben r-hat statistic. Statis-
tical inferencewas based on the 95%Bayesian Credible Interval (CrI) of
the posterior distribution, i.e., the highest density interval containing
95% of the distribution. If the 95% CrI did not include 0, the effect was
interpreted as significant. For illustrations of the posteriors the
bayesplot (v1.8.0, https://mc-stan.org/bayesplot) and ggplot2 (v3.4.0,
https://ggplot2.tidyverse.org) packages were used. CrI of the (non-
back transformed) posteriors are reported in the text when appro-
priate and CrI of all statistical tests are listed in supplementary table 2.

We also conducted the frequentist equivalents of these analyses
with non-Bayesian linear mixed effect models and 95% confidence
intervals (CI) using lme4 (v1.1.30)54 implemented in R (v4.0.5) and
report all results in supplementary table 2 along with t- and p values.
None of the results differed regarding their significance depending on
whether the Bayesian or frequentist method was used demonstrating
that the results were not affected by sensitivity to the choice of priors.
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Any statistical tests that did not involve single-trial data were
performed using frequentist t tests for group comparisons of con-
tinuous data, Fisher’s exact test for comparisons of binary data (e.g.,
handedness), and linear regression for regression analyses across
participants. Post hoc tests were corrected for multiple compar-
isons using the Bonferroni method and corresponding P-values are
marked as Pcorrected. Two-tailed P-values were used throughout the
statistical analyses except when there were clear hypotheses about
the directionality of effects, in which case one-tailed values were
used (marked as Pone-tailed). Notably, this was only the case for the
post hoc comparison between contralateral and ipsilateral DBS (see
results).

Drift diffusion modeling
DDMmodels the decision-making process as a continuous integration
of sensory evidence for two alternative options until a threshold is
reached, which reflects that sufficient evidence has been accumulated
to commit to a choice26. There are threemain parameters: the drift rate
v reflects the rate of evidence accumulation (with low drift rates
resulting in slow and error-prone choices), the decision threshold a
defines the amount of evidence that is neededbefore responding (with
low thresholds resulting in faster but less accurate responses), and the
non-decision time t reflects processes not directly related to the
decision process, such as afferent delay, early sensory processing, and
movement preparation, see Fig. 2A. Of note, since we here predicted
reaction times that did not contain movement (see above), the non-
decision time parameter did not include movement execution. In a
control analysis, we included an additional bias parameter defining
whether the accumulation process started centered between the two
options or might be biased toward one of them. This parameter was
not different from 0.5 (i.e., centered) according to its 95% CrI in the
initial model (see below) and did not alter any of the reported results
when including it in the models. Therefore results from the less com-
plex models without this parameter are reported in the main text. We
applied a Bayesian hierarchical estimation of DDM (HDDM v0.8.0)27

implemented in Python3 (v3.6). Analogously to our behavioral analy-
sis, the hierarchical design assumes that parameters from individual
participants are not completely independent, but drawn from a com-
mon group distribution. Prior distributions were informed by 23 pre-
vious studies27. While we hypothesized that speed vs. accuracy
instruction would primarily modulate the decision threshold
parameter14,16,26, we initially also allowed drift rate and non-decision
time to vary depending on instruction and estimated this full model
both for PD patients and healthy people.MCMCsamplingwas used for
Bayesian approximation of the posterior distribution of model para-
meters generating 10,000 samples and discarding 2000 samples as
burn-in. Convergence was assessed by inspecting traces of model
parameters, their autocorrelation, and computing the Gelman-Rubin
R-hat statistic27. Parameters of the model were analyzed for sig-
nificance by computing the CrI of the posteriors and tested for sig-
nificance analogously to the behavioral analysis described above.
Whenwehadclear a-priori hypotheses concerning the directionality of
effects (since HDDM was conducted after the behavioral analysis), we
also considered one-tailed tests, i.e., the 90% CrI testing whether the
distribution overlapped with 0 on one side of the distribution, sig-
nificant. In these cases, this is clearly marked as CrI90 when reporting
the results.

After estimating this full model we then reduced the model to
only contain the significant modulations (i.e., effect of Instruction on
decision thresholds, see results) and assessed model performance
using quantile probability plots26, in which predicted and observed
reaction times for the 10, 30, 50, 70, and 90 percentile were plotted
against their predicted and observed cumulative probability for each
condition16,20. To assess whether single-trial changes in (z scored)
movement times were related to changes in decision-making

parameters, we then applied HDDM regression analysis using the fol-
lowing model:

a =β0j +β1*Instruction+β2*movement time+β3*Instruction*movement time

ð5Þ

v =β0j +β1*movement time ð6Þ

t =β0j +β1*movement time ð7Þ

We estimated this for PD patients and healthy people. Statistical
analyses were performed as described above.

Processing of STN LFPs
LFPs were sampled from bilateral STN at 2048Hz, bandpass filtered
between 0.5 and 500Hz and amplified with a TMSi porti device (TMS
International, Enschede, The Netherlands). The same system was used
for recording the force measures and TTL pulses (see above) through
auxiliary input channels. The whole recording was visually inspected
for artifacts off-line in Spike2 (Cambridge Electronic Design, Cam-
bridge, UK) and noisy trials were rejected. After artifact rejection (on
behavioral and neurophysiological grounds) ~140 trials per patient and
1780 trials in total remained. Further analysis of the data was per-
formedusing FieldTrip (v20201126)55 implemented inMatlab (R 2019a,
The MathWorks, Natick, MA, USA). All scripts are available on https://
data.mrc.ox.ac.uk 53. The data were imported to Matlab, high-pass fil-
tered at 1 Hz using a 4th order Butterworth filter, bandstop filtered
between 49-51Hz (FieldTrip function ft_preprocessing), and down-
sampled to 200Hz using an anti-aliasing filter at 100Hz (ft_resample).
A bipolar montage was created from the monopolar recordings by
computing the difference between the most dorsal omnidirectional
contact and the neighboring three dorsal directional contacts,
between the three dorsal and corresponding three ventral directional
contacts, as well as the three ventral directional contacts and neigh-
boring most ventral omnidirectional contact resulting in 9 bipolar
channels per STN (ft_apply_montage). In one patient (PD2), who was
implanted with quadripolar (i.e., non-directional) leads, three bipolar
contacts per STN were created by computing the difference between
the neighboring contacts (according to MedtronicTM contacts 0 vs. 1, 1
vs. 2 and2 vs. 3). For eachbipolar channel thedatawere transformed to
the frequency domain using the continuous Morlet wavelet transform
(width = 7, ft_freqanalysis) for frequencies from 2 to 100Hz using steps
of 1 Hz and 20ms throughout the whole recording. Power of each
frequency was baseline corrected (ft_freqbaseline) relative to themean
power of that frequency across the whole recording16. The resulting
spectra were epoched and aligned with, respectively, onset of the
moving dots cue and movement onset (ft_redefinetrial). Spectra of
each single-trial were classified as contralateral and ipsilateral with
respect to the effector (left or right hand) of the current trial. In order
to identify the bipolar contact, which showed the strongest task-
related modulation, we analyzed all contacts with respect to their
expression ofmovement-related gamma (55–80Hz) activity.We chose
this frequency as a functional localizer, because STN gamma activity is
highly focal (in contrast to lower frequencies), localized within the
dorsal STN17,35 and correlates with movement parameters during force
production17,18. For each hemisphere the contact with the strongest
movement-related increase in gamma was chosen for further analysis.
If no clear gamma increase could be detected (8/26 sides), the channel
with the strongest beta power (defined individually between 13 and
30Hz) reduction during the movement was chosen for each STN. We
confirmed the validity of this functional localizer approach by con-
ducting lead localization analysis (seebelow). For each trial activitywas
extracted from the STN contralateral to themovement resulting in one
STN channel per patient.
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Electrode localization
Electrode localization was carried out using the Lead-DBS toolbox
(v.2.5.2; https://www.lead-dbs.org/) with default parameters as
described elsewhere56. Briefly, using Advanced Normalization Tools
(ANTs) preoperative magnetic resonance imaging and postoperative
CT scans were corrected for low-frequency intensity non-uniformity
with the N4Bias-Field-Correction algorithm, co-registered using a lin-
ear transform and normalized into Montreal Neurological Institute
(MNI) space (2009b non-linear asymmetric). Brain shifts in post-
operative acquisitions were corrected by applying the “subcortical
refine” setting as implemented in Lead-DBS57. The reconstructed
electrodes (marked at contacts, which were used for LFP recordings
and stimulation) were then overlaid on the STN to confirm proper
targeting, see supplementary Fig. 8. Imaging data was not available in
three patients. In these patients we only relied on the functional
localizer, but proper placement was also suggested by the clinical
improvement during continuous DBS (see supplementary table 1),
which would not be expected with placement outside of the STN.

Statistical analysis of STN LFPs
For the statistical analysis of LFPs we had clear a-priori hypotheses
about the temporal and spectral characteristics of STN activity rele-
vant for adjustments of, respectively, decision thresholds and move-
ment parameters based on previous studies.
(i) Movement-related increase in gamma (Gammamove) activity and
(ii) movement-related decrease in beta (Betamove) activity, both of

which have been shown to correlate with movement parameters
during force production17,18.

(iii) Cue-related decrease in beta activity (Betacue), which has been
shown to bemodulated by speed vs. accuracy instructions, and to
correlate with changes in reaction times and decision
thresholds16,40,58.

(iv) Cue-related changes in theta (Thetacue: 4–8Hz) activity, which
have been related to adjustments of reaction times28 and decision
thresholds16,20.

We analyzedwhether changes in STN activity were related to trial-
by-trial adjustments of reaction and movement times after extracting
single-trial values as the mean value in time windows, which were
based on the features in spectra averaged across all trials (i.e., irre-
spective of speed vs accuracy). These features and respective time
windows were:
(i) Gammamove from movement onset to 300ms after movement

onset (see supplementary Fig. 3B showing the clear, temporally
confined gamma increase).

(ii) Betamove using the same time window as above, see Fig. 3D.
(iii) Betacue reflecting the reduction of beta power after the cue16,40,

i.e., the difference between beta power at stable pre-cue levels
(300-100ms precue) and after the decrease where beta power
again plateaued (320-400ms post cue; the troughwas at 320ms),
see Fig. 3B. The plateau at ~400ms has consistently been
observed across studies16,40. To ensure that no movements
occurred during this timewindow (beta power strongly decreases
during movement) we excluded all trials with reaction times
<400ms (7% of all trials) for the prediction of reaction times (see
below) as a control analysis. While the post cue window (320-
400ms) could not be moved to later time periods to avoid
increasing numbers of responses occurring in this window, we
conducted control analyses shifting the baseline period across
different time windows of the pre-cue period demonstrating that
the results were not dependent on the exact definition of the pre-
cue window (supplementary table 5).

(iv) Thetacue extracted froma750ms timewindowafter the cue based
on our previous study16. To ensure that no movements occurred
during this time window we excluded all trials (30% of all trials)

with reaction times <750ms for the prediction of reaction times
(see below).

All single-trial values were z scored by subtracting the mean and
dividing by the standarddeviation for each patient. Trials with z scores
>3 were excluded (<5% of trials combined).

We used the same Bayesian hierarchical regression models as
described for the behavioral analysis, now including Gammamove,
Betamove and Betacue as predictors:

μj =β0j +β1*Instruction+β2*Gammamove +β3*Betamove +β4*Betacue
+β5*Gammamove*Instruction+β6*Betamove*Instruction +β7*Betacue*Instruction

ð8Þ

This was done using reaction and movement time as dependent
variable in two separate models thus allowing us to assess whether
single-trial changes in the respective frequency bands were predictive
of the behavioral adjustments. Since for Thetacue, a larger amount of
trials had to be excluded (~30% had reaction times <750ms) we per-
formed this analysis in a separate regression model only containing
Thetacue, Instruction and its interaction. Since only beta power was
related to both adjustments of movement and reaction times, results
from theta and gamma power are mainly reported in supplementary
Fig. 3. Finally, we assessed a putative by-trial relationship between
Betacue and Betamove by using the former as a predictor of the latter.

We also assessedwhether changes in STN activity in the described
timewindows were modulated by task instructions. To this end power
of each frequency during the respective time windows was averaged
across trials separately for speed and accuracy trials and this trial-
averaged data then compared using paired t tests.

HDDM with single-trial STN LFPs
After having established which of the frequency bands were related to
adjustments of reaction times, we analyzed whether they were speci-
fically related to changes in distinct decision-making parameters. To
this end, we entered the respective single-trial values into an HDDM
regression model. Due to the different amount of trials and to reduce
model complexity, this was done for each frequency band separately
and only if the respective frequency bands showed significant effects
on reaction times in the previous analysis (here shown for Betacue):

a = β0j +β1*Instruction+β2*Betacue +β3*Instruction*Betacue ð9Þ

v =β0j +β1*Betacue ð10Þ

t =β0j +β1*Betacue ð11Þ

Sampling and statistical analysis of HDDM were performed as
described above.

Burst stimulation
After the first session patients had a short break of ~30–60min. During
this time the LFPs recorded from bilateral STN were processed and
analyzed as described above, but instead of constructing bipolar
channels from neighboring electrodes, two wider bipolar contacts
were constructed so as to allow recording during stimulation of an
intervening contact. First, directional contacts were averaged to form
an omnidirectional contact (resulting in four omnidirectional contacts
per STN). Then, a dorsal bipolar contact between the most dorsal and
secondmost ventral contact and a ventral bipolar contact between the
most ventral and the second most dorsal contact were created. This
was done to compute the bipolar contact with the clearest movement
modulation of gamma and beta activity, since this has been related to
localization within or close to the dorsal STN17,24,34,35, and allows
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stimulation of the contact in between this bipolar pair to mitigate the
stimulation artifact using common-mode rejection40,59. The two bipo-
lar contacts on each side were then compared regarding the extent of
movement-related gamma and beta modulation and the best contacts
(i.e., with the clearest modulation) chosen as recording electrodes
using the electrode in between as active contact for stimulation. DBS
was applied using a custom-built device previously validated40 in
pseudo-monopolar mode using reference pads on the patients’
shoulders as anode. Frequency (130Hz) and pulse width (60μs) were
fixed. To allow inference on timing-specific effects of stimulation DBS
was applied in bursts. Mean DBS burst duration was 250ms (drawn
randomly from a uniform distribution between 150 and 350ms) and
mean burst interval was 150ms (drawn randomly from a uniform dis-
tribution between 75 and 225ms), see Fig. 4A. These parameters were
defined based on our previous study of closed-loop DBS40 and were in
simulations shown to result in DBS bursts occurring in ~50% of trials in
any given 100ms time window during the experimental task allowing
us to compare timing-specific behavioral effects of DBS vs. no-DBS.
Stimulation was applied simultaneously to both hemispheres and
ramped up and down to reduce paresthesia40,59. Ramp duration
depended on the DBS intensity and ranged from ~150 to ~350ms (see
supplementary table 1 for details). DBS intensity was titrated by slowly
increasing the intensity of continuous DBSon each side and evaluating
clinical effects on Parkinsonian symptoms as well as putative side
effects by a trained clinician. When the threshold for clinical effects
was reached the intensity was noted and, in the case of side effects,
slightly decreased. We evaluated this procedure by performing
double-blind UPDRS-III scores (limb bradykinesia, rigidity, and tremor
scores) in continuousDBSONvs.OFF. This showed an improvement in
clinical scores in each patient (average from 25.3 to 17.8, P <0.001,
paired samples t test) confirming that the chosen intensities were
clinically effective. We then used this intensity for burst stimulation
while patients performed the same experimental task as described
above. None of the patients reported paresthesia during the
experiment.

In a third and final session, PD patients again performed the same
experiment with STN burst stimulation but instead of bilateral stimu-
lation, DBS was given unilaterally. Respectively left and right STNwere
simulated in separate sessions comprising 100 trials each in counter-
balanced order. Other than that simulation settings were identical.
Two of the patients who underwent bilateral stimulation were not able
to perform the final session due to fatigue leaving eight patients for
this session.

Effects of burst stimulation on behavior
Timing-specific effects of STN burst stimulation were analyzed using a
moving-window approach40. Stimulation intensity at each sample was
saved in the recording software and imported toMatlab alongwith the
TTL pulse (signaling the response), downsampled to 200Hz, and
binarized (0 for no stimulation, 1 for stimulation). Since intensities
during ramping up and down of stimulation were below the clinically
effective intensity they were defined as no stimulation40. However,
since stimulation might already have effects on decision-making pro-
cesses at intensities below clinical thresholds43 we conducted addi-
tional control analyses defining incremental parts of ramping as
stimulation. This was done until inclusion of 100ms ramping (the last
50ms of ramping up and first 50ms of ramping down), since here only
20% of trials remained as off-stimulation trials.

For each trial, we noted for 100ms long time windows if stimu-
lation was applied or not (at any point during that window). This time
window was shifted by 10ms over 1500ms (from −500 to +1000ms
for the cue-aligned data and from −1000 to +500ms for the
movement-aligned data). We also analyzed the percentage of trials in
which stimulation was applied at any given time window, which con-
firmed that stimulationwas applied between ~40 and 50%of trials at all

time windows (Fig. 4B). Next, for each time window, we computed the
average reaction and movement time after speed vs. accuracy
instructions for all trials in which stimulation was applied and all trials
in which stimulation was not applied. At the second level, i.e., in the
across-subjects analysis, we then compared whether the SAT effect
(RTAccuracy–RTSpeed)was affectedby stimulationbyperforming cluster-
based permutation tests40,60,61. At each time window, we computed the
effect of stimulation on the SAT using an alpha of 0.05 as cluster-
building threshold. To correct for the high number of statistical tests
the resulting clusters, which consisted of all time points that exceeded
the initial threshold, were compared against the probability of clusters
occurring by chance by randomly shuffling between stimulation labels
(stimulation versus no stimulation) of each subject using 1000 per-
mutations.Only clusters in the observeddata thatwere larger than 95%
of the distribution of clusters obtained in the permutation analysis
were considered significant and marked as Pcluster < 0.05. In case of a
significant effect, post hoc tests were conducted by extracting the
mean values of the respective time windows (termed DBSRT and
DBSMT) for each patient and then tested for stimulation effects during
speed and accuracy trials using one-sample t tests. We also assessed
whether stimulation in the time window affecting reaction times
(DBSRT) modulated decision thresholds (as we hypothesized from the
previous analyses, see Results) by using HDDM including DBS (stimu-
lation vs. no stimulation) as a predictor of thresholds during respective
speed and accuracy trials. Due to the limited number of trials (10
patients, and given that DBS at each time window was only applied in
~50% of trials) we did not use more complex models.

For unilateral burst stimulation, processing of the data was iden-
tical to bilateral stimulation except that trials were divided into
responses with the contralateral vs. ipsilateral hand, since we here
asked whether the observed effects of stimulation on reaction times
were global (i.e., related to withholding any response) or lateralized
(i.e., responses of the contralateral hand). To assure a sufficient num-
ber of trials, they were initially not further subdivided into speed vs.
accuracy, but we compared the conditions in a post hoc test for the
significant time window (see results). Based on the results from the
previous bilateral stimulation analysis, we computed the reaction
times for trials with contralateral and ipsilateral responses for the time
windows aligned to the cue and computed whether they were affected
by stimulation using permutation tests, shuffling the stimulation labels
(see above). Todirectly compare effects of contralateral and ipsilateral
stimulation on reaction times we extracted the mean values of the
significant timewindow (termedDBScontra, see results) for eachpatient
and then compared the two stimulation conditions using a paired t
test. We also included DBS at this time window as a predictor of
decision thresholds in HDDM for contralateral and ipsilateral stimu-
lation. Finally, to assess whether the behavioral effects of unilateral
stimulation were related to the significant effects on reaction time
adjustments that we had observed during bilateral stimulation, we
performed linear regression using behavioral effects of unilateral sti-
mulation as predictor and of bilateral stimulation as a dependent
variable for, respectively, contralateral and ipsilateral stimulation. To
directly compare contralateral and ipsilateral stimulation we also
included both as predictors in a multiple regression analysis.

Effects of burst stimulation on STN LFPs
Whilst stimulation was applied LFPs were continuously recorded
through the two contacts neighboring the stimulation contact and a
bipolar signal derived as previously described (i.e., wide bipolar
recording). Despite common-mode rejection, the artifact was clearly
visible (see supplementary Fig. 5A) and its spectral characteristicswere
not strictly confined to the stimulation frequency and its harmonics
(supplementary Fig. 5B, C). Hence the following artifact removal pro-
cedure was applied. The data were imported to Matlab, high-pass fil-
tered at 4Hz and low-pass filtered at 100Hz using a 4th order
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butterworth filter, demeaned, and detrended (ft_preprocessing). After
visual inspection of the LFPs from each patient a common threshold
was set at 10 µV. This was chosen, because the remaining (i.e., after
filtering) stimulation artifact, but not physiological LFPs (in the interval
of stimulation bursts), consistently crossed this threshold. At each
sample the signal was removed if it crossed the threshold (on average
<1% of the signal) and replaced by linear interpolation of the neigh-
boring non-noisy signals. Afterwards the data were downsampled to
200Hz and the subsequent time-frequency analysis was identical to
the LFP recordings described above. For each patient at least one
hemisphere showed clear beta power reduction around the move-
ment, and the best hemisphere was then chosen for the second-level
analysis (an example of single subject beta power is shown in supple-
mentary Fig. 5D, E, subject-averaged spectra are shown in supple-
mentary Fig. 6). We also assessed the overall effect of stimulation on
beta power by aligning beta power to the onset of stimulation (after
ramping) and normalizing it to the mean beta power when no stimu-
lation was applied (i.e., during the stimulation interval). As
expected29–32, this showed a clear stimulation-related reduction in beta
power, see supplementary Fig. 7.

To assess the electrophysiological effects of timing-specific
stimulation (i.e., in the time windows affecting behavior), on the
second level we computed the cue-related beta power change for
DBSRT and DBSMT trials and compared them to trials where no sti-
mulation was applied in the respective windows (500ms windows
centered around the respective DBS windows, i.e., −300 to +200ms
for DBSRT and +200 to +700ms for DBSMT) using cluster-based
permutation tests as described above. Of note, since beta power
was normalized to the mean power across the whole stimulation
session stimulation-induced reductions in beta power would result
in relatively higher beta power when no stimulation was applied. To
ensure that changes were not due to responses occurring earlier
when stimulation was applied (the DBSMT window occurred rela-
tively late during the trial), we only assessed beta power at each trial
until onset of the movement. In more detail, for a 1 s long window
(400ms before the cue to 700ms after the cue) the time series of
each trial was capped at the time ofmovement onset and then these
time series were averaged across trials16. To ensure a sufficient
number of trials we did not further subdivide trials into speed vs.
accuracy.

For unilateral stimulation, the sameprocessing and analysis of LFP
data were carried out as described above, except that we compared
the stimulated STN (for trials with stimulation at the critical time
window) to the STN that was not stimulated (since stimulation was
only applied in one hemisphere at a time) thus allowing us to assess
whether the observed changes were due to stimulation or simply due
to differences in data acquisition (neighboring vs wide bipolar
recordings).

Of note, we did not attempt to analyze gamma or theta power
during stimulation since these frequency bands were heavily affected
by stimulation artifacts (see Supplementary Figs. 5 and 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Original data are available upon request to the corresponding author
(damian.m.herz@gmail.com). At present, participant consent does not
allow for depositing the full original dataset. A minimum example
dataset (including scripts) is available on https://data.mrc.ox.ac.uk/
data-set/subthalamic-nucleus-correlates-decision-and-movement-
speed (https://doi.org/10.5287/bodleian:1R9KzGXxM). Source data are
provided with this paper.

Code availability
Code (including instructions and a minimum example dataset)
is available on https://data.mrc.ox.ac.uk/data-set/subthalamic-
nucleus-correlates-decision-and-movement-speed (https://doi.org/
10.5287/bodleian:1R9KzGXxM).
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