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Recent advances in the role of excitation–inhibition balance in 
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Abstract

Stroke affects millions of people worldwide each year, and stroke survivors are often left with motor deficits. Current therapies 
to improve these functional deficits are limited, making it a priority to better understand the pathophysiology of stroke recovery 
and find novel adjuvant options. The excitation–inhibition balance undergoes significant changes post-stroke, and the inhibitory 
neurotransmitter γ-aminobutyric acid (GABA) appears to play an important role in stroke recovery. In this review, we summarise 
the most recent studies investigating GABAergic inhibition at different stages of stroke. We discuss the proposed role of GABA 
in counteracting glutamate-mediated excitotoxicity in hyperacute stroke as well as the evidence linking decreased GABAergic 
inhibition to increased neuronal plasticity in early stroke. Then, we discuss two types of interventions that aim to modulate the 
excitation–inhibition balance to improve functional outcomes in stroke survivors: non-invasive brain stimulation (NIBS) and 
pharmacological interventions. Finding the optimal NIBS administration or adjuvant pharmacological therapies would represent 
an important contribution to the currently scarce therapy options.
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Introduction
Ten million people worldwide have a stroke each year1, making  
stroke a leading cause of both morbidity and mortality2,3,  
with survivors often left with motor impairments that limit 
their independence1,4. Not only is stroke associated with  
life-changing challenges for the individual and their family5 but 
also it comes with a high economic cost. In 2012, stroke cost 
the USA alone over $30 billion, a figure predicted to triple by  
20306,7.

Reperfusion therapy has transformed acute stroke care over 
the last decade8, contributing to substantially reduced mortality  
rates1. However, over half of stroke survivors require rehabilita-
tion for residual motor deficits9,10. Currently, the gold standard 
interventions for motor rehabilitation are limited to physical/
occupational therapies: patients are given task-specific training11,  
which focuses on gaining new motor skills, constraint-induced 
movement therapy (CIMT)12, or robotic therapy13,14. Even after 
physical therapy, patients may still have motor deficits, deem-
ing the motor recovery incomplete. All current therapies  
depend on performing repeated movements, limiting their util-
ity in people with severe motor impairments who most require 
intervention. Therefore, developing novel approaches to enhance 
the benefits of physiotherapy, particularly for patients with 
severe residual deficits, is a substantial unmet clinical need. 
To do this, we need to understand the neural mechanisms  
of underlying post-stroke motor recovery.

The neural mechanisms of post-stroke recovery have been 
extensively studied, both in the acute, post-ischaemic period 
and in the chronic phase. Of these, excitation–inhibition  
balance appears to be central. Physiologically, both glutamate and  
γ-aminobutyric acid (GABA), the major excitatory and inhibi-
tory neurotransmitters, are tightly regulated15. However, after 
a stroke, complex changes in GABAergic regulation occur in 
both stroke survivors and animal models, which are likely cen-
tral to functional improvement in recovery after stroke16,17.  
Indeed, GABA has been shown to regulate neuroplasticity  
in the motor cortex in both healthy animal models and 
humans18,19. The modulation of GABAergic signalling is therefore  
promising for developing novel therapies.

Here, we first discuss how neurotransmitters can be quantified 
in humans. Then, we review the role of excitation–inhibition  
balance in the pathophysiology of stroke in both humans and 
animal models in each stage of stroke recovery. Finally, we 
describe different putative interventions, which aim to modu-
late the excitation–inhibition balance in order to improve motor  
recovery, and discuss what questions remain to be answered.

GABA quantification in humans
GABA can be quantified in humans using transcranial magnetic 
stimulation (TMS), magnetic resonance spectroscopy (MRS),  
and positron emission tomography (PET).

Transcranial magnetic stimulation
TMS has been used extensively to investigate cortical excit-
ability and intracortical inhibition in stroke patients20. Briefly, 
an electromagnetic coil is positioned on the scalp over the  
primary motor cortex (M1), which causes a rapidly changing 
magnetic pulse to induce an electric current in M1 neurons. If  
the current is large enough, this causes neuronal depolarisa-
tion and subsequent muscle contraction, which can be observed 
as motor-evoked potentials (MEPs) via electromyography 
(EMG). TMS quantifies overall corticospinal excitability21 and  
can also estimate synaptic activity reasonably specifically 
by using paired pulses with different interstimulus intervals 
(ISIs). The two main classes of GABA receptors, GABA

A
 and  

GABA
B
, can be at least mostly distinguished using quite  

different stimulus paradigms. GABA
A
 receptor activity can be 

measured with an ISI of 1–5 ms (short-interval intra-cortical  
inhibition [SICI])22 and GABA

B
 receptor activity with an ISI of 

50–200 ms (long-interval intra-cortical inhibition [LICI])23.

Even if TMS measurements are widely used to study excit-
ability and inhibition, TMS remains a noisy technique24. To get 
a robust measurement, the mean of a large number of measure-
ments is calculated25. The quality of the TMS measurements  
is also dependent on the experimenter’s proficiency, which  
cannot be assessed from the data. Finally, acquiring TMS 
measurements in stroke survivors is difficult, as corticospinal  
tract damage reduces MEPs. Therefore, TMS studies in stroke 
patients are biased towards patients with mild and moderate  
motor impairments.

Proton magnetic resonance spectroscopy
Proton MRS (1H-MRS) allows reliable and non-invasive quan-
tification of neurochemicals in vivo26. 1H-MRS can provide 
measurements of both glutamate and GABA but with limited  
spatial and temporal resolution: MRS quantifies the total 
amount of a neurochemical in a relatively large MRS voxel  
of interest (8–15 cm3), acquired over minutes. Both glutamate 
and GABA are important brain metabolites; however, estab-
lishing whether the MRS-derived metrics relate to metabolism,  
neurotransmission, or both is not possible.

It is not clear how MRS and TMS metrics relate. Multi-modal 
TMS and MRS studies found no link between MRS-derived  
GABA concentrations ([GABA]) and TMS measures of phasic  
(synaptic) inhibition27–30. A relationship has been proposed 
between [GABA] in M1 and what is believed to be a TMS  
measure of extrasynaptic, tonic inhibition27,31, but this result has  
not been replicated in recent studies29,30.

Positron emission tomography
PET uses radioactive tracers to measure specific biochemical 
processes. The radioactive tracers do not interfere with physi-
ological functions, having a relatively short half-life, and can 
be extremely biochemically specific. While PET does not have 
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good spatial or temporal resolution, it has provided important 
insights into stroke pathophysiology, such as differentiating  
between the stroke core and penumbra in humans32.

Excitation–inhibition balance in stroke 
pathophysiology
Stages of stroke recovery in humans
A framework has been recently proposed to describe the 
stroke recovery timeline33. In humans, stroke can be classified 
into four stages: hyper-acute (0–24 hours post-stroke), acute  
(1–7 days post-stroke), subacute (early subacute 7 days–3 
months; late subacute 3–6 months post-stroke), and chronic 
(more than 6 months post-stroke), each denoted by distinct 
pathogenic mechanisms. Briefly, hyper-acute stroke is char-
acterised by increased excitability due to glutamate-mediated 
excitotoxicity, acute and early sub-acute stroke (or early stroke)  
by reduced intracortical inhibition (hypothesised to support 
neuronal plasticity) and a significant recovery of motor func-
tions, and chronic stroke by a normalisation of intracortical  
inhibition and more stable motor performance.

It is unclear how these stages in human recovery map onto 
recovery stages in animal models. In rodents, the hyper-acute  
phase is likely to occur in the first few hours after stroke, a 
timescale broadly similar to that in humans. However, this 
is dependent on the stroke model being used. In rodents, the  
post-ischaemic “sensitive period”, putatively the equiva-
lent of early stroke in humans, lasts for the first 4 weeks. This 
period is characterised by enhanced long-term potentiation, 
increased cortical excitability, and decreased inhibition along  
with increased dendritic spine formation and axonal sprouting,  
creating a pro-plastic environment34. Whether this is reca-
pitulated in humans is not yet known, though in humans the 
rate of motor recovery peaks around 3 months after stroke, 
whereas this is seen at approximately 4 weeks in rodents35,  
suggesting the periods may have similarities.

Hyper-acute stroke
No studies have investigated excitation–inhibition balance this 
early after stroke in humans, likely because of survivors’ complex  
medical needs at this time. However, we know from animal 
models and in vitro studies that ischaemia leads to neuronal  
death primarily via glutamate-mediated excitotoxicity36,37, 
which would lead to an increase in the excitation–inhibition 
ratio. In line with this, an in vivo MRS study in rats reported 
increased glutamate and taurine at 2 hours post-stroke38. Indeed, 
in humans, early mobilisation (within the first 24 hours after the  
stroke) led to worse outcomes at 3 months3,39.

However, a recent ex vivo MRS study in rodents demonstrated 
decreased glutamate in the ipsilesional hemisphere 1 hour  
after stroke, reaching a minimum after 24 hours. GABA,  
glycine, and lactate were all significantly increased in the  
ipsilesional hemisphere during this timeframe, with GABA  
levels peaking 3 hours after stroke40. These results are unex-
pected; it is possible that different techniques used to perfuse  
and fix the tissue samples might affect ex vivo measurements.

GABA counteracts the excitotoxic activity of glutamate and has 
therefore been hypothesised to be neuroprotective. Preclinical  
studies using benzodiazepines, positive allosteric modulators 
of the GABA

A
 receptor41, demonstrated a decrease in ischae-

mic damage and improved motor rehabilitation in both rodents  
and non-human primates42,43. However, the beneficial effect  
of benzodiazepines has not been replicated in clinical trials, 
as reported by a recent Cochrane systematic review. Patients 
who received benzodiazepines within 12 hours of symptom 
onset showed no significant difference in recovery compared  
to placebo44.

Benzodiazepines are commonly prescribed to older adults45,46, 
meaning that some patients were taking benzodiazepines  
before their stroke. Despite promising evidence from the ani-
mal literature, patients who were taking benzodiazepines before 
stroke had a significantly higher mortality and worse func-
tional outcomes 3 months after stroke47. However, though the 
authors tried to eliminate selection bias, this result may be 
partly biased by the pre-existing comorbidities that led to the  
need for benzodiazepine treatment.

Taken together, it is likely that human pathophysiology in 
the hyper-acute phase is more complex than the pathophysi-
ological changes reported in animal stroke literature. Gaining 
more insight into the pathophysiology of hyper-acute stroke is  
necessary in order to provide an alternative therapy for patients  
who cannot receive reperfusion therapy.

Acute and sub-acute stroke
Most spontaneous recovery occurs in the acute and early  
sub-acute stages33,35,48. The first 3 months post-stroke are likely to 
be characterised by neurochemical changes that support neuro-
nal plasticity and spontaneous recovery. Therefore, here we will 
refer to the acute and early sub-acute stages together as “early  
stroke”.

Early stroke in humans is likely to be characterised by mecha-
nisms and processes similar to those of the peri-ischaemic 
sensitive period in rodents15, but a lack of cross-species tools  
means that validating this link is difficult. MRS is a potential 
modality that might allow relatively direct comparison between 
rodent and human models, though acquisition protocols and  
tissue preparation may vary considerably between species. One 
of the clear findings from the animal literature is the increase 
in extrasynaptic GABA

A
 tonic inhibition in the peri-infarct  

area17. However, ex vivo 1H-MRS in rodents demonstrated a  
significant decrease in NAA, GABA, and glutamate and an 
increase in glutamine, myo-inositol, and lactate in the ipsilesional 
hemisphere 7 days after stroke49, suggesting that the synthesis  
of both glutamate and GABA from glutamine may be 
decreased. It is not clear what effect this change in metabolites 
7 days after stroke would have on overall excitation–inhibition  
balance.

In early stroke in humans, TMS studies demonstrate a reduced 
excitation–inhibition ratio that increases over time. A recent 
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meta-analysis concluded that thresholds were higher in the 
ipsilesional hemisphere compared to controls, indicating, as  
expected, a lower excitation–inhibition ratio in the affected  
hemisphere post-stroke50. It is not clear what drives this decreased 
excitation–inhibition balance: as might be predicted using 
PET, GABA

A 
activity was shown to be increased at 1 month  

post-stroke, decreasing to normal at 3 months post-stroke51.  
However, TMS metrics show a significant reduction in GABA

A
 

activity (SICI) in the ipsilesional hemisphere compared to 
both the contralesional hemisphere and healthy age-matched  
controls50.

Furthermore, in a recent relatively small study, MRS-derived 
measurements of [GABA] in ipsilesional M1 were not signifi-
cantly different from those in healthy age-matched controls,  
but [GABA] in the contralesional M1 was significantly lower, 
leading to an overall higher excitation–inhibition ratio52.  
Interpretation of this result is not simple: the authors also 
reported higher GABA

B
 activity (LICI) in both hemispheres 

compared with controls, in contradiction to previous studies53,54. 
Compared with controls, there was also an increase in 1 ms 
SICI, a putative measure of extra-synaptic activity, in the ipsile-
sional hemisphere at 6 weeks post-stroke, though this was not  
present at either 2 weeks or 12 weeks post-stroke52.

It is difficult to explain why during early stroke patients seem to 
have both a lower excitation–inhibition ratio and lower intra-
cortical inhibition, especially since there are no significant  
differences in TMS- or MRS-derived metrics of glutamate activ-
ity. Likely, the mechanisms regulating the excitation–inhibition  
balance are more complex than simply expecting that a 
change in inhibition would produce a proportional change to 
the overall excitation–inhibition ratio. Particularly, different  
aspects of inhibitory signalling (tonic versus phasic inhibi-
tion; synaptic GABA

A
 or GABA

B
 receptors) may affect the  

excitation–inhibition balance in different ways. Pharmacologi-
cal studies enable modulation of these processes separately, 
at least to some degree, which may allow researchers to tease 
apart how changes in either excitation or inhibition affect the  
overall excitation–inhibition balance.

Conducting research with early stroke patients is difficult, as 
there are several challenges associated with their care and health 
status at this point, including difficulties recruiting patients  
owing to poor recovery, loss of contact because of transfer to a 
different centre/physiotherapy facility, heterogeneity of comor-
bidities, medication and recovery, and difficulties in travel-
ling from their home to the research facility, meaning that large 
samples are often difficult to achieve for individual studies.  
However, multi-centre studies are hampered by a lack of stand-
ardisation in the research methods themselves, for example 
defining appropriate inclusion criteria when residual functional  
impairments are not yet clear. In particular, neuroimaging  
studies in early stroke often rely on clinical imaging, which is  
not standardised across centres, making multi-centre studies  
difficult. One way to address some of these challenges is to 
have a recognised framework of definitions and standards for 

stroke recovery, such as the one that has been introduced by the 
Stroke Recovery and Rehabilitation Roundtable taskforce33.  
Adoption of this framework will allow more multi-centre trials  
to be conducted, ultimately increasing both the quantity and  
the quality of the data being collected.

Chronic stroke
Chronic stroke patients are unlikely to improve their motor  
function after approximately 6 months post-stroke unless given 
rehabilitation, suggesting that the neurochemical milieu is  
significantly different in this period compared to in early 
stroke. However, characterising this has proved difficult: 
although the majority of studies in humans occur in the chronic 
phase, there is a paucity of data from animal models regarding  
excitation–inhibition balance. TMS studies have shown that, 
as in the early stages of stroke recovery, overall cortical excit-
ability is decreased in the ipsilesional hemisphere compared to 
both the contralesional hemisphere and healthy age-matched  
controls50. A number of human MRS studies have demon-
strated a decrease in [GABA] in the ipsilesional hemisphere at 
rest in chronic stroke patients55–57. However, GABA

A
-mediated  

inhibition measured using SICI does not differ significantly 
between the ipsilesional hemisphere and either the contralesional 
hemisphere or healthy age-matched controls50. This pattern 
contrasts with that seen in early stroke, when GABAergic inhibi-
tion is decreased in the ipsilesional hemisphere, but is consistent  
with the time course for spontaneous functional improvements. 
Therefore, it is plausible that decreased inhibition in early 
stroke may play an important role in supporting neuroplastic-
ity and, as inhibition normalises, the potential for spontaneous  
motor recovery reduces. Recent preliminary evidence supports  
this role for GABA

A
-mediated inhibition by demonstrating  

a relationship between lower inhibition and better hand  
function post-stroke58. Improvements in function following  
rehabilitation interventions at this stage also appear to be related 
to changes in inhibition. The relative improvement in function 
after 2 weeks of CIMT was positively correlated with decreases 
in MRS-derived [GABA] in ipsilesional M156. Moreover, base-
line [GABA] predicted subsequent response to a non-invasive  
brain stimulation (NIBS) intervention59.

However, as with all clinical studies, the population studied  
is heterogeneous and measures are indirect, meaning that 
drawing firm conclusions from these data can be difficult. In  
particular, it is likely that rehabilitation interventions modu-
late excitation–inhibition balance60–63; without controlling for 
this, it is impossible to disambiguate spontaneous changes from  
those induced by motor training.

Multimodal studies are vital to interpret the potentially con-
flicting results between modalities. A recent study using 
both TMS and MRS described no significant differences in  
TMS-derived measurements of GABA

A
 activity between 

patients and controls57. However, the authors reported a sig-
nificant reduction in [GABA] in both hemispheres in the same 
patients. There was no correlation between neurophysiological 
measurements of GABA

A
 and GABA

B
 receptor inhibition and  
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MRS-derived [GABA], making it difficult to distinguish which 
GABA compartments are measured with MRS, since they 
do not relate to the neurotransmitter’s activity at its recep-
tors. This raises an important question for the understand-
ing of brain physiology, which should be addressed by future 
research: do MRS neurochemical metrics relate more closely to  
neurotransmitter activity or to metabolism?

One promising avenue for future research highlighted by  
Mooney and colleagues was the role of the GABA

B
 recep-

tor in the excitation–inhibition balance in chronic stroke. TMS 
measures of GABA

B
-mediated inhibition have been found 

to be higher in the ipsilesional hemisphere, and late cortical  
disinhibition (LCD), a measure of presynaptic GABA

B
 recep-

tors normally present in healthy adults64, had an inhibitory 
effect in the ipsilesional hemisphere in chronic stroke57. LCD 
was the only metric that correlated with clinical impairment 
and functional scores, possibly suggesting a central role for  
GABA

B
 signalling.

All of the studies discussed above relate to measures of 
GABAergic inhibition at rest. However, GABA

A
-mediated 

inhibition decreases during healthy movement preparation, 
allowing movement to occur65. An abnormal persistence of  
GABA

A
-mediated inhibition during movement preparation 

has been reported in chronic stroke patients66. It is not clear 
whether this is a pathological or compensatory change, but a 
recent study in healthy subjects demonstrated that as subjects 
learnt a motor task, GABA

A
-mediated inhibition was main-

tained for longer67, possibly suggesting that the maintenance of  
pre-movement inhibition may be a compensatory phenomenon.

There is no evidence of neurophysiological changes in the 
contralesional hemisphere and healthy age-matched adults 
in either early or chronic stroke50, suggesting that the patho-
logical mechanisms of stroke are limited to the affected hemi-
sphere. Supporting the presence of a pro-plastic environment  
in the ipsilesional hemisphere would therefore be more likely 
to be beneficial for motor recovery than neuromodulation  
of the contralesional hemisphere.

Modulating GABAergic inhibition in stroke
Two major classes of interventions have been employed to mod-
ulate GABAergic inhibition and promote recovery post-stroke:  
NIBS and pharmacological agents.

Non-invasive brain stimulation
NIBS can be used either to provide neurophysiological meas-
urements of cortical excitability and intracortical inhibition, 
as described above for TMS, or to modulate neuronal activ-
ity, usually using repetitive TMS (rTMS) or transcranial electric  
stimulation in the form of transcranial direct current stimulation  
(tDCS; see 68 for a full description)69.

NIBS aims to promote a pro-plastic environment, and its effect 
on motor recovery post-stroke has been investigated in numer-
ous studies. This vast body of work is not within the scope of 

this review. Several recent reviews and meta-analyses have 
discussed the role of NIBS in motor recovery post-stroke70,  
including the effect of rTMS on motor recovery after stroke71,72, 
the effect of tDCS combined with motor practice on stroke 
recovery73,74, and the role of NIBS on recovery of fine motor 
functions after stroke75. Overall, evidence points to a beneficial  
effect for NIBS in stroke recovery, especially when associ-
ated with physical rehabilitation, but further randomised,  
sham-controlled studies are needed to address the high het-
erogeneity of NIBS techniques as well as find the optimal start,  
duration, and frequency of stimulation administration.

Pharmacological interventions
Several compounds have recently shown promising results in  
animal models of stroke but have yet to complete clinical trials.

Recently, S44819,a selective antagonist of the extrasynap-
tic GABA

A
 α5 receptor with a good safety profile for human 

use, was developed76,77. Reducing pathologically increased 
tonic inhibition with S44819 during early stroke led to better  
motor function in mice78, with associated increased neuronal  
viability, decreased peri-infarct astrogliosis, increased brain 
capillary density, and higher proliferation of neural precursor  
cells. Despite this promising evidence from preclinical  
studies, a recent phase II clinical trial reported no significant  
difference in overall post-stroke recovery after long-term 
administration of S44819 in early stroke compared with  
placebo79. However, the modified Rankin Scale, the primary 
endpoint measure, has low sensitivity, and the absence of meas-
urement on motor-specific scales makes it hard to detect small 
improvements in motor functions. Additionally, to increase  
recruitment, this clinical trial included all patients who 
had suffered a cortical or combined cortical-subcortical  
ischaemic stroke between 2 and 6 days before inclusion in the 
study. In animal stroke models, S44819 is shown to improve 
motor function in a lesion that includes the motor cortex, so 
it is possible that recruiting only patients with M1 lesions  
may have shown better outcomes. Additionally, the dura-
tion of drug administration for each patient was not taken into 
account, and no TMS or MRS data were collected to confirm  
that S44819 administration in stroke patients leads to similar  
changes in GABAergic inhibition as seen in healthy volunteers.  
Lastly, it is worth noting that sex hormones influence neu-
rotransmitter release, and the animal stroke study used only 
male mice. Even if the median age of the patients included  
in the clinical trial is over 67 years old, which would make the 
majority of female patients included postmenopausal, a poten-
tial difference in efficacy between sexes cannot be excluded. 
Therefore, it is probably too early to dismiss this approach as  
a line of potential therapy.

S44819 is not the only GABA-modulating drug to be tri-
alled to normalise the increased tonic inhibition present after 
stroke. Preclinical stroke studies reported a significant improve-
ment of motor functions in rodents after administration of 
α-GABA

A
 receptor inverse agonists like L-655,70817,80–82 or  

methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate  
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(DMCM)83. Owing to safety issues regarding the need to 
be dissolved in DMSO, L-655,708 will never be used in  
humans, but DMCM is yet to be trialled in humans.

Data from animal studies using L-655,708 show that a small 
GABA receptor occupancy (7–14%) is needed to see a strong 
effect on post-stroke recovery. Therefore, there is a lot of  
debate on whether a full antagonist or a negative allosteric 
modulator (NAM), which would allow for titration of recep-
tor occupancy, might be better to use. Further studies could 
combine pharmacological interventions with neuroimaging or  
brain stimulation to test this hypothesis.

A potential role for the δ-GABA
A
 receptors, which are prima-

rily found extrasynaptically, has been proposed in motor stroke 
recovery after administration of the δ-GABA

A
 receptor-positive  

allosteric modulator DS2 led to decreases in infarct size 
and significant motor improvements in rodents84. The ben-
eficial role of flavonoids, such as 2’-methoxy-6-methyflavone  
(2’MeO6MF), on motor recovery after stroke has also been 
linked to δ-GABA

A
 receptors, as the effect was lost in δ-GABA

A
  

receptor knock-out animals85.

Zolpidem is a hypnotic and selective non-benzodiazepine  
GABA-positive allosteric modulator for the α1 subtype of 
the GABA

A
 receptor86. In rodents, two recent studies have 

shown that low doses of zolpidem administered daily from 
either day 1 or day 3 after stroke significantly improved motor 
recovery, though it did not affect the size of the lesion87,88.  
Zolpidem is safe to use in humans and has been used in  
diseases of consciousness after brain injury89. However, 
whether zolpidem might have a beneficial effect on motor 
recovery after stroke in humans is yet to be investigated. 
The hypothesis that zolpidem may have an effect on motor  
recovery is supported by anecdotal evidence from case studies  

showing improvements in post-stroke aphasia after zolpidem  
administration90.

However, translating results from animal models to clini-
cal populations has proved to be a significant problem in stroke  
research. This has been recently addressed by the Stroke 
Recovery and Rehabilitation Roundtable translational work-
ing group. Their guidelines aim to change the design of future 
preclinical studies in order to align the methods and outcome 
measures used in animal studies to those of clinical trials91.  
Improving translation can be achieved only by understanding 
the limitations of animal models of stroke, finding appropriate 
outcome measurements that can be compared between humans 
and animals, and designing preclinical and clinical experi-
ments that can be easily compared in terms of dose and time of  
drug administration.

Conclusions
In this review, we discussed current understanding of the changes 
in the excitation–inhibition balance that characterise stroke 
recovery. While it is apparent that this balance undergoes sig-
nificant changes during hyperacute, early, and chronic stroke, 
it is still unclear exactly what molecular and cellular mecha-
nisms are underlying these changes during each stroke stage. 
GABA seems to play a central role in stroke recovery: increased 
GABAergic inhibition has been hypothesised to be protective 
during hyperacute stroke by counteracting glutamate-mediated  
excitotoxicity, while decreased GABAergic inhibition during  
early stroke has been proposed as a mechanism to support  
neuronal plasticity and subsequent improvements in motor  
functions. However, the role of inhibition in stroke recovery is 
much more complex. Investigating how changes in GABAergic  
inhibition affect overall cortical excitability and how they 
eventually relate to functional changes is necessary in order  
to better understand stroke pathophysiology.
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