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Summary

Understanding how coordinated neural networks support brain functions remains a central goal 

in neuroscience. The hippocampus, with its layered architecture and structured inputs to diverse 

cell populations, is a tractable model for dissecting operating microcircuits through the analysis of 

electrophysiological signatures. We investigated hippocampal network patterns in behaving mice 

by developing a low-dimensional embedding of local field potentials recorded along the CA1-to-

dentate gyrus axis. This embedding revealed layer-specific gamma profiles reflecting spatially 

organized rhythms and their associated principal cell-interneuron firing motifs. Moreover, firing 

behaviors along the CA1 radial axis distinguished between deep and superficial principal cells, 

as well as between interneurons from the pyramidal, radiatum, and lacunosum-moleculare layers. 

These findings provide a comprehensive map of spatio-temporal activity patterns underlying 

hippocampal network functions.

Introduction

Brain networks consist of diverse neuronal populations organized into intricate 

microcircuits. Understanding the mechanisms that enable their coordinated activity to 

support network functions remains a central goal in neuroscience. Electrophysiology, 

combined with anatomical insights, is a powerful approach to achieve this objective. 

However, fully characterizing and interpreting the electrical signatures emanating from these 

networks remains a key challenge.

The hippocampus is a network at the nexus of the brain’s circuitry for internal information 

processing1–4. Its primary output – the CA1 pyramidal cells – express diverse firing 
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patterns shaped by inputs from within and outside the hippocampus and refined by 

local interneurons5–8. These inputs and interneurons are organized in layers along the 

pyramidal cells’ somato-dendritic axis6,9–11. This radial arrangement produces a rich 

repertoire of electrophysiological patterns in the local field potentials (LFPs). Deepening 

our understanding of these signatures could clarify the processes underlying hippocampal 

functions.

Hippocampal network patterns are behavioral state dependent. Sharp-wave ripples (SWRs) 

in the Cornu Ammonis (CA) and dentate spikes in the dentate gyrus (DG) occur during sleep 

and immobility. Dentate spikes are large-amplitude events observed in DG LFPs, linked to 

entorhinal cortex inputs to DG moleculare layers12–17. The SWR complex originates from 

a current sink in the CA1 radiatum (the sharp-wave), driven by CA3 inputs, and culminates 

in brief high-frequency (100 – 250 Hz) oscillations (the ripples) in the CA1 pyramidal 

layer18–20. Deciphering the mechanisms underlying these phenomena has led to significant 

insights into the role of SWRs in memory stabilization and learning21–30.

During active exploration, the rodent hippocampus exhibits theta (5 – 12 Hz) 

oscillations31,32, which coordinate hippocampal circuits and orchestrates interactions with 

extrahippocampal regions33–37. Theta oscillations nest gamma rhythms (25 – 150 Hz), bursts 

of rhythmic activity reflecting circuits and pathways across the hippocampal formation38–43. 

Gamma oscillations serve as proxies for the activity of known pathways and microcircuits, 

enabling the study of their functions44–49. Identifying novel gamma oscillations may reveal 

neuronal motifs not evident from anatomy alone.

The radial organization of hippocampal microcircuits encompasses substantial neuronal 

diversity. Until recently, CA1 principal cells were assumed to form a homogeneous 

population. However, recent research has identified two parallel microcircuits among 

CA1 principal cells, with distinct properties and connectivity, supporting complementary 

processing channels50–54. While CA1 principal cells are densely packed within the 

pyramidal layer, interneurons are dispersed across layers55. These include multiple cell types 

that target different pyramidal cell subdomains, display distinct firing patterns, and likely 

serve specialized roles in the local CA1 network10,56,57. Whether interneuron soma location 

relates to their electrophysiological heterogeneity remains unclear.

We explored the temporal architecture of hippocampal activity across layers by developing a 

low-dimensional embedding representing electrophysiological patterns from behaving mice 

implanted with silicon probes. Individual LFPs along the CA1-to-DG axis carried sufficient 

information within theta and sharp-wave waveforms to distinguish hippocampal layers. Each 

discerned layer displayed a distinct theta-nested gamma profile, reflecting the coexistence 

of multiple hippocampal gamma oscillations. In subsequent experiments, the embedding 

guided the placement of independently movable tetrodes in specific CA1 layers. Individual 

adjustment of tetrodes allowed maximizing single unit yield and target interneurons in 

the sparse stratum radiatum and lacunosum-moleculare layers. Analyses of gamma-related 

firing revealed rhythm-specific principal cell-interneuron temporal motifs. Further analysis 

of spiking across layers uncovered layer-specific dynamics, differentiating deep and 

superficial pyramidal cells, as well as neurons in the radiatum versus lacunosum-moleculare 
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layers. Together, these findings highlight the fine-grained spatio-temporal organization of 

hippocampal network activity.

Results

Identifying individual hippocampal layers along the CA1-to-DG axis

We tested whether LFP patterns could distinguish the radially organized layers from CA1 

to DG in the dorsal hippocampus. We implanted linear silicon probes in six mice (Table 

S1) along the somato-dendritic axis of CA1 principal cells, extending up to the upper DG 

blade (Figure 1A). This setup allowed simultaneous LFP recordings across layers during 

open-field exploration and sleep/rest. We focused on three electrophysiological patterns 

(Figure 1B): theta oscillations (5 – 12 Hz) during exploration, as well as sharp-wave ripples 

(SWRs) and dentate spikes (DS1 and DS2) during sleep/rest.

Anatomical layers were identified along the probe using established electrophysiological 

signatures (Figure 1C). The CA1 pyramidal layer channel was identified as the one with 

the highest ripple power, while the radiatum was identified by the strongest current sink 

coinciding with the ripple amplitude peak20,58–60. The hippocampal fissure channel was 

identified as the channel with the highest theta power61–64, while the lacunosum-moleculare 

was defined as being 40–50 μm above the fissure.

In DG, the outer and mid-molecular layers corresponded to the deepest current sinks for 

DS1 and DS2 events, respectively12,59. The inner molecular layer was identified by a 

secondary current sink associated with the sharp-wave event18,59. The granular layer was 

identified by the strongest current source of DS beneath the molecular layers12,16,17,59. 

These spatio-temporal patterns were consistent across mice (Figure S1).

This layer assignment was facilitated by silicon probes, which enabled recordings from 

uniformly spaced channels along the CA1-DG axis. We next tested whether layer identity 

could be inferred from theta phase reversals and sharp-wave waveform features on a 

per-channel basis. To this end, we applied ISOMAP embedding to represent theta and 

sharp-wave waveforms across layers in a two-dimensional feature space (Figure S2 and 

Figure 1D-F). Channels from the same layer clustered together across mice (Figure 1F). 

The resulting feature trajectory naturally connected anatomically adjacent layers, despite no 

anatomical information provided to the embedding.

To assess trajectory consistency across recordings, we computed their similarity and 

compared it to surrogate trajectories that preserved the original spectral properties (Figure 

1G). For recordings from the same mouse across days, similarity was 30.1 standard 

deviations above the surrogate expected values (99% CI: 18.1–42.9). Across mice, 

similarities remained 18.0 standard deviations above the control values (99% CI: 12.2–24.8). 

This demonstrates that trajectories were highly reproducible within and across mice.

To further assess the electrophysiological distinguishability of hippocampal layers we 

trained classifiers to recognize each layer from its embedding projections using leave-one-

out cross-validation (Figure 1H). Classification was optimal for the pyramidal, radiatum, 
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mid-molecular, and granular layers. The inner molecular layer achieved near-optimal 

performance. The lacunosum-moleculare layer, hippocampal fissure, and outer molecular 

layer were differentiated from other layers; yet, splitting these three layers remained 

challenging (Figure 1H; left). To quantify layer-specific information in the feature space, 

we calculated the Shannon information between actual and predicted layers. These values 

were significantly higher than those obtained from controls with shuffled labels (Figure 1H; 

right). These findings demonstrate that LFP-based landmarks are consistent across mice and 

enable reliable layers identification along the CA1-DG axis.

Theta-nested gamma oscillations along the CA1-to-DG laminar profile

Theta oscillations influence large-scale brain networks, while hippocampal gamma 

oscillations reflect fine-grained pathways38–40. Analyzing gamma across layers could 

thus clarify the functional microarchitecture of hippocampal networks. We generated theta-

gamma profiles for each layer distinguishable in the embedding space (Figure 1F,H) using 

two complementary evaluations (Figures 2A and S3A). First, we computed the amplitude of 

individual gamma frequencies using the CA1 pyramidal theta rhythm as a phase reference 

(Figure 2A; left panel for each layer). This enabled comparing amplitudes of gamma 

frequencies within each layer. Second, we normalized each frequency’s amplitude by its 

minimum value (Figure 2A; right panel for each layer), rendering a perspective on gamma 

amplitude modulation by theta phase.

In CA1, mid gamma (~50 – 90 Hz) oscillations were present across all layers (Figure 

2A), with their maximum amplitude occurring just after the pyramidal layer theta peak 

(Figure 2A,B). The pyramidal layer also showed a fast gamma component (~100 – 250 

Hz) increasing at the theta trough41,42,45,46 (Figures 2A,B and S3A), though with lower 

amplitude than mid gamma. The radiatum layer displayed slow gamma oscillations (~25 – 

45 Hz) at the descending theta phase, alongside a fast gamma component (Figure 2A,B). 

While slow gamma in radiatum has been described previously41,42,45,46,65, this radiatum 

fast gamma has not been reported. The lacunosum-moleculare profiles showed mid gamma 

oscillations but lacked clear slow or fast gamma components (Figure 2A). These findings 

were reproducible across mice (Figure S3A).

In DG, two distinct fast gamma components were observed: one in the mid-molecular 

layer just after the pyramidal theta trough, and another in the granular layer just before 

the theta trough (Figures 2A,B and S3A). The granular layer also displayed a slow gamma 

component, aligned with that observed in radiatum (Figure 2A,B and S3A). Like CA1, all 

DG layers displayed mid gamma oscillations. Additionally, a beta component (~18 – 35 

Hz) was observed in the mid-molecular layer, reaching its maximum amplitude just after 

the pyramidal theta peak (Figure S3A). Although occupying lower frequencies, this beta 

component emerged at a distinct theta phase from slow gamma.

Assigning precise frequency ranges to gamma oscillations is challenging–especially for fast 

gamma, which has significantly lower amplitudes than mid gamma oscillations (Figure 

2A) and can be overshadowed in non-normalized spectrograms. Conversely, normalized 

spectrograms can distort the frequency range of oscillatory components (Figure S3B). We 

thus detected bursts within each gamma band and computed their main spectral components 
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using broadband LFP spectrograms. This indicated a mean frequency of ~31 Hz for slow 

gamma in the radiatum, and ~35 Hz in the granular layer (Figure 2C; left). Mid gamma 

displayed a main frequency of ~68 Hz across all layers (Figure 2C; middle). Fast gamma 

exhibited a main frequency of ~130 Hz in the pyramidal layer, and ~120 Hz in the radiatum, 

molecular layer, and granular layer (Figure 2C; right).

Previous work showed that slow and mid gamma amplitude increases with running speed 

in mice46,66. Consistent with this, we observed that all rhythms increased in power with 

speed [speed modulation index, averaged across mice (99% CI): pyramidal fast gamma, 4.75 

(3.58–6.03); radiatum slow gamma, 5.42 (4.19–6.58); radiatum fast gamma, 2.85 (1.74–

4.04); lacunosum-moleculare mid gamma, 3.38 (1.95–4.94); mid-molecular fast gamma, 

5.40 (4.65–6.11); granular fast gamma, 2.29 (1.64–3.08)].

In sum, signals recorded with linear probes consistently revealed slow gamma oscillations 

in the radiatum and granular layers, along with a widespread mid-gamma component across 

all CA1-to-DG layers (Figure 2D). This profiling also identified four distinct fast gamma 

components localized to the pyramidal, radiatum, mid-molecular, and granular layers. 

Lastly, the consistency of gamma profiles across mice provides robust cross-validation for 

hippocampal layer delineation, as gamma oscillations were not used to compute the LFP 

embedding.

Laminar signatures retrieved in independently movable tetrode recordings

To evaluate the generalizability of hippocampal layer profiling across mice and recording 

techniques, we next used the embedding to guide tetrode placement in mice implanted with 

independently movable tetrodes. Each tetrode was lowered stepwise, with signals recorded 

at each position, while one tetrode remained in the pyramidal layer as a reference for ripple 

detection and theta phase.

The procedure began with tetrodes positioned in the pyramidal layer, where ripples were 

clearly visible and the tetrode’s embedding projection was close to the pyramidal layer 

coordinate. For tetrodes aimed at the radiatum, signals were recorded at each lowering 

step, and their projections were tracked until reaching the radiatum coordinate (Figure 3A). 

At that point, SWR and theta waveforms were consistent with those of radiatum channels 

in the silicon probe data (Figure 3B). Subsequent histological evaluation confirmed that 

radiatum-targeted tetrodes were positioned within the predicted layer (Figure 3C). The same 

procedure was applied to tetrodes targeting the lacunosum-moleculare, mid-molecular, and 

granular layers (Figure 3D–L). These results, combining tetrode recordings with histological 

verification, validate the embedding layer prediction.

The gamma signatures observed with embedding-guided, anatomically-validated tetrodes 

were consistent with those obtained in silicon probe recordings (Figures 3 and S4). 

Specifically, fast gamma oscillations were detected in the pyramidal, radiatum, and mid-

molecular layers, just after the pyramidal theta trough, while in the granular layer they 

preceded the theta trough. Radiatum fast gamma was more prominent in the distal part 

of the layer, below its "center" coordinate (Figure S5). Slow gamma components were 

consistently present in the radiatum and granular layers, as observed with silicon probes. A 
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beta component (~18–35 Hz) was detected in molecular layer channels, while mid gamma 

(~50–90 Hz) was observed across all layers, also consistent with silicon probe recordings.

Spiking profiles of pyramidal layer neurons across gamma oscillations

Gamma oscillations are thought to reflect postsynaptic potentials influencing local spiking 

activity67. Investigating the temporal relationship between neuronal spiking and gamma 

oscillations provides insights into their underlying mechanisms and functions. We observed 

a strong relationship between the gamma phase and the spike timing in both principal 

cells and pyramidal layer interneurons (Figure 4). Aligning the activity of these populations 

to a single trough of radiatum slow gamma per theta cycle revealed clear slow gamma-

paced spiking, spanning at least five cycles (Figure 4A,B). The mean phase for both 

CA1 principal cells and pyramidal layer interneurons was consistent at the radiatum slow 

gamma troughs (Figure 4C). Applying the same analysis to mid gamma in the lacunosum-

moleculare layer revealed three cycles of mid gamma-paced spiking in CA1 pyramidal 

layer cells (Figure 4D,E). While CA1 principal cells consistently fired preferentially around 

lacunosum-moleculare mid gamma ascending phase, pyramidal layer interneurons displayed 

varied firing phases from the mid gamma trough to its peak (Figure 4F).

We next analyzed spike modulation by fast gamma oscillations recorded either from the 

pyramidal layer or distal radiatum (Figure 4G-I). Gamma trough-triggered averages for 

each layer-specific fast gamma revealed 2 to 3 cycles of fast gamma-modulated spiking 

in CA1 principal cells and pyramidal layer interneurons (Figure 4H; left and middle 

columns). These findings support the existence of genuine fast gamma oscillations, beyond 

potential spike-leakage artifacts. For comparison, we repeated this analysis for ripples, 

which share a similar frequency range to fast gamma (Figure 4H; right). Consistent 

with previous work20,68, principal cells fired around the ripple trough, slightly preceding 

pyramidal layer interneurons (Figure 4I). Similarly, both cell types preferred the ascending 

phase of pyramidal fast gamma, with principal cells firing earlier (Figure 4I). In contrast, 

radiatum fast gamma exhibited the opposite relationship, with interneurons firing earlier 

than principal cells (Figure 4I; middle). These results suggest that pyramidal and radiatum 

fast gamma oscillations are generated by distinct mechanisms.

Profiling CA1 principal cells from deep to superficial pyramidal sublayers

Recent studies have highlighted differences in the firing characteristics of CA1 principal 

cells along the radial axis of the pyramidal layer53,54,69,70. Using our embedding approach, 

we resolved subpopulations of (tetrode-recorded) principal cells. This sublayer resolution 

emerged primarily from the gradual progression of the sharp-wave waveform—detected as 

a positive deflection near the oriens layer, shifting to a minor negative deflection within 

the pyramidal layer, and ultimately becoming the distinct negative sharp-wave in radiatum 

(Figure 5A). Projecting signals from individual tetrodes yielded a bimodal distribution of 

embedding coordinates (Figure 5B; left). This bimodality reflected how minor adjustments 

in tetrode position around the sharp-wave polarity inversion produced marked shifts in the 

embedding projection, resulting in a gap in the projection distribution.
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Consistent with the silicon probe recordings (Figure 5A), tetrodes positioned in the 

pyramidal layer closer to radiatum exhibited a clearer theta-nested slow gamma component 

than those near the oriens (Figure 5B; right panels). We found a significant relationship 

between sharp-wave amplitude and slow gamma power across tetrodes (Figure S6A; 

Spearman correlation = 0.53, p < 10-10). No such correlation was observed with mid gamma 

power (Spearman correlation = 0.027, p = 0.46).

Next, we categorized CA1 pyramidal cells into deep and superficial populations using 

a 2-component Gaussian Mixture Model classifier applied to their linearized coordinates 

(Figure 5B). During awake theta oscillations, deep pyramidal cells fired at a higher rate 

than superficial cells [Figure 5C; mean rate (99% CI): deep, 2.56 (2.43 – 2.69) spikes/sec; 

superficial, 2.24 (2.11 – 2.37) spikes/sec; p < 10-5 for both bootstrap and permutation tests]. 

In contrast, during sleep/rest SWRs (analyzed using a 10-ms window centered at the ripple 

power peak), superficial cells fired more than deep cells [Figure 5C; mean rate (99% CI): 

superficial, 19.90 (18.96 – 20.88) spikes/sec; deep, 13.62 (13.13 – 14.14) spikes/sec; p < 

10-5 for both bootstrap and permutation tests].

The mean theta firing phases also differed between the pyramidal sublayer groups. Deep 

principal cells fired with an earlier mean theta phase than superficial cells (Figure 5D and 

Table S2; p < 10-5 for both bootstrap and permutation tests). Superficial cells exhibited 

stronger spike-to-theta phase coherence (Figure 5D and Table S2; p < 10-5 for both bootstrap 

and permutation tests). This difference in coherence stemmed from deep pyramidal cells 

firing proportionally more spikes around the theta peak (Figure 5C), nudging their mean 

phase closer to the peak and resulting in reduced modulation depth.

Given that low and high firing rate CA1 principal cells are hypothesized to exhibit different 

properties 71,72, it remained plausible that the observed disparities in mean theta phase and 

coherence arose from firing rate differences rather than anatomical position. To address 

this, we conducted an additional analysis, subsampling deep and superficial cells to match 

their firing rate distributions (Figure S6B). After matching firing rates, superficial cells still 

exhibited a later mean theta phase than deep cells [mean phase difference (99% CI): 7.42° 

(6.26 – 8.56), p < 10-5]. Similarly, superficial cells remained more strongly coupled to the 

theta phase [mean vector length difference (99% CI): 0.029 (0.026 – 0.033), p < 10-5].

We further examined the coupling levels between gamma oscillations and pyramidal cell 

groups (Figure 5E and Table S2). While slow gamma coupling was similar in both groups, 

deep cells exhibited stronger coupling to pyramidal and radiatum fast gammas, mid gamma, 

and ripple oscillations (Table S2). These findings highlight distinct firing properties along 

the radial axis of the CA1 pyramidal layer, underscoring the importance of considering this 

sublayer heterogeneity.

CA1 interneuron firing behavior follows a laminar organization

CA1 layers host highly diverse arrays of interneurons10,55,73,74. Unlike the pyramidal 

layer, which contains the highest density of somata, the radiatum and lacunosum-

moleculare layers have sparse interneuron populations. This anatomical sparsity imposes a 

significant challenge for in vivo electrophysiological recordings, contributing to our limited 
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understanding of their spiking dynamics. Using our embedding approach, we classified 

interneurons in our tetrode dataset by their somatic layer (Figure 6A). In addition to 389 

interneurons recorded in the pyramidal layer, we identified 176 and 69 interneurons in the 

radiatum and lacunosum-moleculare layers, respectively (Figure 6B). By optogenetically 

targeting CA3 versus EC inputs using Channelrhodosin-2 in some of these mice, we 

confirmed that the interneurons recorded in these layers receive distinct, radially organized 

upstream inputs (Figure 6C-E)75. Specifically, optogenetic stimulation of CA3 terminals 

strongly entrained interneurons in radiatum (and stratum pyramidale) with minimal effect on 

lacunosum-moleculare cells; while EC terminal stimulation strongly entrained lacunosum-

moleculare interneurons with little effect on other layer interneurons (Figure 6E).

During sleep/rest periods outside of SWRs, pyramidal interneurons were the most active 

[mean rate (99% CI): 10.3 (9.5–11.1) spikes/sec], while radiatum and lacunosum-moleculare 

interneurons exhibited similarly lower activity [mean rate (99% CI): radiatum, 2.9 (2.3–

3.8) spikes/sec; lacunosum-moleculare, 3.0 (1.9–4.5) spikes/sec]. During SWRs, pyramidal 

and radiatum interneurons showed strong transient increase in firing, whereas lacunosum-

moleculare cells showed minimal to non-significant responses (Figure 6F). During awake 

theta, pyramidal interneurons were the most active [mean rate (99% CI): 14.4 (13.3–15.5) 

spikes/sec], followed by lacunosum-moleculare [5.5 (3.2–8.4) spikes/sec] and radiatum cells 

[3.1 (2.2–4.4) spikes/sec]. Interneurons in different layers fired with different preferred 

theta phases (Figure 6G): lacunosum-moleculare cells fired earliest [mean phase (99% CI): 

133° (109–157)], followed by pyramidal [172° (170–174)] and radiatum [214° (205–222)] 

interneurons. Thus, CA1 interneurons and principal cells exhibit a layer-selective activity 

profile (Figure S7A).

In terms of theta-nested gamma oscillations, radiatum and lacunosum-moleculare 

interneurons were weakly modulated by fast gamma from both pyramidal and radiatum 

layers (Figure S7B). Radiatum slow gamma oscillations strongly modulated interneurons 

across all CA1 layers (Figures 4E,6H and S7C). Lacunosum-moleculare interneurons 

showed strong coupling to lacunosum-moleculare mid gamma, whereas radiatum 

interneurons (like pyramidal layer interneurons; Figure 4E), were only weakly modulated 

by this oscillation (Figures 6H and S7C).

Discussion

Mapping hippocampal layers through electrophysiological signatures

The hippocampus comprises a complex network of interrelated microcircuits. Understanding 

their operations is key to revealing how the hippocampus supports diverse behaviors. 

By placing electrodes in different parts of this circuitry, we capture a myriad of 

electrophysiological patterns, which reflect both the activation of individual circuit 

components and their dynamic interactions. Interpreting these patterns provides insights 

into the cellular mechanisms of each microcircuit and their functions.

We developed an embedding that maps hippocampal layers based on theta and sharp-wave 

waveforms. Channels from the same layer consistently clustered together across mice, 

and the embedding reliably guided layer targeting in movable tetrode recordings. These 
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results indicate that mapping layers using electrophysiological features, rather than absolute 

anatomical depth, can homogenize laminar identification across variations in penetration 

angle, anatomical scaling, and experimental setup.

Of note, positions in the embedding space do not map linearly onto absolute anatomical 

depth. Instead, the feature space reflects how rapidly electrophysiological features change 

across layers. As a result, regions with minimal changes — such as the transition from 

lacunosum-moleculare to the outer molecular layer — are compressed, whereas regions 

with sharp transitions— such as from deep to superficial CA1, where sharp-wave polarity 

reverses — are expanded. This nonlinearity explains the apparent bimodality in tetrode 

embedding projections (Figure 5B). Thus, although the CA1 pyramidal layer is anatomically 

thinner than the combined lacunosum-moleculare and outer molecular layers, it occupies a 

substantially larger portion of the embedding space.

We propose that this approach is broadly adaptable to other layered brain regions and across 

species. Examining the phase reversal of delta waves and spindles in the neocortex76–79 

could reveal nuanced laminar patterns. Extending such analyses across neocortical areas 

— from primary to associative — or comparing these networks across species could 

offer deeper insights into circuit organization and function. Such efforts could also align 

with and expand on studies suggesting canonical, layer-based mechanisms for cortical 

computation80,81.

Limitations of the study

Our embedding did not differentiate between lacunosum-moleculare and outer molecular 

layers, reflecting the highly similar SWR and theta waveforms. We also found no consistent 

differences in their theta-gamma profiles, and their CSD signals were highly correlated 

during both SWR and theta (Figures 1C and S1), suggesting that the underlying synaptic 

currents related to these events are largely indistinguishable. One shared input to these 

layers, but not to the mid molecular layer, is the lateral entorhinal cortex (LEC)82. Although 

both LEC and the medial entorhinal cortex (MEC) project to lacunosum-moleculare, the 

organization of their axonal projections along the septo-temporal and proximal-distal axes 

of CA182–84 may bias lacunosum-moleculare signals toward a LEC-dominated pattern, 

thereby approximating it to outer molecular layer electrophysiologically at our recording 

sites. Additionally, certain interneuron types targeting lacunosum-moleculare in dorsal CA1 

extend axonal branches into the DG molecular layer, potentially contributing to the shared 

patterns observed across these regions85,86. Although our focus here was on the radial axis 

of the dorsal hippocampus, these observations highlight the importance of examining how 

electrophysiological patterns vary along anatomical axes, and how such variations correlate 

to known gradients of extrinsic and local inputs.

Our framework relies on CSD-based layer definitions to create reference points for aligning 

feature trajectories across animals. In its current form, applying this method without a 

comparable ground truth would require adapting the alignment strategy. Moreover, we fit the 

embedding using probes with inter-channel spacing matched to the anatomical spacing of 

the layers studied. When channels are under-sampled (reducing spatial resolution), crucial 

information needed to separate layers is lost (Figure S2C). Thus, applying this framework 
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to other regions requires a comparable dataset with simultaneous recordings that sample a 

spatial axis at sufficient spatial resolution to resolve the relevant layers.

As both SWR87–90 and theta91,92 waveforms exhibit variability, averaging across multiple 

events is necessary to obtain stable mean waveforms for mapping channels into the 

embedding. To estimate how many SWR events and theta cycles are needed within our 

framework, we randomly sampled varying numbers of events for each pattern and evaluated 

how sample size affected their projections. When using all available theta cycles and 

subsampling SWR events, we observed a substantial variability in the projection of the 

same channel (Figure 7A,B). Strikingly, when repeating the same analysis for theta cycles 

(using all available SWR events), the projection variability was substantially lower (Figure 

7C,D). This shows that the theta waveform features that fluctuate across cycles are largely 

orthogonal to the embedding. Thus, resolving a layer such that it can be distinguished from 

others in the embedding typically requires hundreds of SWR events, whereas far fewer theta 

cycles suffice.

On SWR diversity and embedding projection variability

Recent studies have shown that LFP signals recorded from a single site can reflect 

underlying currents across layers. Sebastián et al.93 used topological analysis of SWR 

waveforms recorded at the pyramidal layer to reveal a low-dimensional structure mapping 

onto CSD profiles. Castelli et al.90 showed that ripple waveform at stratum pyramidale 

predicts SWR CSD profiles. Similarly, pyramidal layer LFPs can be used to distinguish 

between DS types classically defined by CSD analysis14,94. While our framework is 

conceptually aligned with these studies in retrieving CSD information from single-site 

LFPs, we have not here explored SWR diversity. However, when projecting a single SWR 

event onto the embedding, coordinates showed substantial spread around its ‘converging’ 

position (Figure 7). Although this may reflect an under-sampling issue—where more events 

must be averaged to reduce ‘noise’—it is possible that this variability reflects meaningful 

physiological processes. For instance, one could test whether CA2 activity preceding CA1 

SWRs95 biases embedding projections.

Network layering and cellular basis of theta-nested gamma oscillations

CA1 slow gamma is thought to originate in the radiatum41,42,46,65, a layer receiving CA3 

projections83,96. CA3 LFPs prominently express slow gamma42,43, and CA1-CA3 coherence 

is strong within this frequency band39,42,97. Suppressing CA3 terminals optogenetically 

reduces slow gamma power without affecting mid gamma98. Activating CA3 parvalbumin-

expressing interneurons, which suppresses CA3 principal cell output, also reduces CA1 slow 

gamma99,100. Here, slow gamma oscillations were prominent in the CA1 radiatum. The 

slow gamma observed in the pyramidal sublayer adjacent to radiatum is presumably volume-

conducted from radiatum. The dense cellular packing of the pyramidal layer likely acts as a 

barrier, limiting propagation of this signal toward stratum oriens. In lacunosum-moleculare, 

slow gamma was overshadowed by more dominant mid gamma oscillations.

Mid gamma oscillations are proposed to originate from the lacunosum-moleculare41,42,46, 

the main CA1 target of EC layer 3 inputs82,101. Optogenetically disturbing EC output 

Lopes-dos-Santos et al. Page 10

Cell Rep. Author manuscript; available in PMC 2025 June 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



diminishes the mid gamma theta-phase modulation, while leaving radiatum slow gamma 

unaffected102. Intriguingly, we detected mid gamma activity in more distant layers like the 

oriens. While volume conduction may explain this, radiatum slow gamma does not similarly 

cross the pyramidal layer. Moreover, despite low-pass filtering of apical dendrite currents 

as they travel to the soma, CA1 principal cell spiking remained clearly modulated by 

mid gamma. This probably arises from EC-driven mid gamma inputs entraining lacunosum-

moleculare interneurons6 (Figure 6E), which in turn synchronize pyramidal cell firing with 

mid gamma. However, some interneurons act differently; for instance, neurogliaform cells in 

lacunosum-moleculare can decouple mid gamma from CA1 pyramidal cell firing103.

The weak mid gamma modulation of pyramidal layer interneurons—contrasting with the 

strong modulation observed in lacunosum-moleculare interneurons—suggests that the mid 

gamma network operates in parallel to the fast gamma circuitry. Its distributed presence 

across all layers indicates a broader integrative role, potentially coordinating inputs beyond 

EC, including CA2 projections to the stratum oriens104. Thus, although mid gamma may be 

mainly driven by EC, it is not simply transmitted feedforward but emerges from a local CA1 

circuit involving lacunosum-moleculare interneurons.

CA1 fast gamma oscillations generated within the pyramidal layer likely reflect interactions 

between principal cells and pyramidal layer interneurons6,41. Although spike contamination 

is a valid concern65,105, our previous46 and current observations demonstrate genuine 

rhythmicity. We propose that pyramidal fast gamma and ripples arise from a common 

cellular substrate, differing only in their initiating drive: fast gamma is evoked by theta-

related inputs, while ripples are driven by sharp-wave-related inputs.

Interestingly, the timing relationship between pyramidal cells and interneurons associated 

with the radiatum fast gamma cannot be explained by the same mechanism. Instead, 

this rhythm likely stems from feedforward inputs targeting the radiatum and/or lacunosum-

moleculare layers. Fast gamma oscillations in DG have been documented previously106–108 

and shown to be distinct from CA1 fast gamma107. Here, we extend these findings by 

distinguishing two DG fast gamma rhythms: one more pronounced in the molecular layer, 

the other in the granular layer.

Slow gamma oscillations have been identified in DG106,107. Given their theta phase 

alignment with CA1 radiatum slow gamma and the pronounced entrainment of DG cells 

by CA1 slow gamma (even stronger than in CA1 cells), both rhythms may share a common 

source107. One possibility is that they originate in DG, propagate to CA3, and subsequently 

manifest in CA1 radiatum38,107,109. Alternatively, the source may be extra-hippocampal, 

possibly within the medial septum110. Moreover, Fernandez-Ruiz et al106 suggested that DG 

slow gamma arises from LEC inputs.

We further identified a beta component in the DG molecular layer (Figures 2,3 and 

S2A,S3,S4), occasionally observed in lacunosum-moleculare (Figure S5). This component 

shares a similar frequency range and theta-phase modulation with a beta component 

previously described in the CA1 pyramidal layer using a method designed to detect transient 

signals not apparent in averaging analyses46. An oscillation in a similar frequency, termed 
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‘beta2’, has also been reported in the hippocampus111,112. Beta2 partly disrupt ongoing theta 

and persists for several cycles111, rather than being modulated by theta phase. While the 

theta-phase-modulated beta has been associated with memory retrieval46, beta2 has been 

linked to novelty detection111–113. Additionally, 4-Hz-paced activity in ventral tegmental 

area coordinates beta activity in distributed brain regions, including the hippocampus114. 

It remains unclear whether these beta-band rhythms reflect a shared cellular mechanism 

recruited in different behavioral states or arise from distinct oscillators with overlapping 

frequency bands.

Radial organization of principal cell firing behavior within the CA1 pyramidal layer

Cells in the deep CA1 pyramidal sublayer are more active during awake theta69, 

whereas superficial cells are more active in sleep SWRs68 (Figure 5C). This SWR-

related rate difference aligns with in vivo patch-clamp studies showing that superficial 

cells receive heightened excitatory drive during SWRs88,115. Superficial pyramidal cells 

exhibited stronger theta-phase coupling than deep cells, while deep cells exhibited 

stronger synchrony with ripples and gamma oscillations (except slow gamma). The 

enhanced gamma coupling in deep cells likely reflects the stronger local fast-spiking 

interneuron control over deep cells116. The enhanced response of superficial cells to CA3 

inputs115 may explain their similar modulation by slow gamma. Deep cells may be more 

responsive to gamma-associated currents, leaving their activity less dominated by theta and 

resulting in proportionally more spikes outside their preferred theta phase. The distinction 

between deep and superficial CA1 pyramidal cells is emerging as a critical factor in 

hippocampal processing53. These results emphasize that hippocampal functions cannot be 

fully understood without accounting for CA1 pyramidal sublayer-specific differences.

Radial organization of interneuron firing behavior across CA1 layers

We recorded single-neuron activity from the sparse CA1 radiatum and lacunosum-

moleculare layers. Traditionally, recordings in freely-moving animals have targeted the 

pyramidal layer, using its high neuron density and well-characterized electrophysiological 

markers (e.g., ripples). Comparable readouts have been lacking for the more superficial 

layers. Our LFP embedding enables precise targeting of radiatum and lacunosum-moleculare 

neurons.

We found significant firing differences across CA1 layers. Radiatum interneurons were 

strongly recruited by CA3 terminal stimulation and during SWRs, which are primarily 

driven by CA3 inputs21. In contrast, lacunosum-moleculare cells were recruited by 

EC terminal stimulation and showed the strongest coupling to mid-gamma oscillations, 

consistent with the association of this rhythm with EC inputs39,40. These populations also 

differed in theta phase preference: lacunosum-moleculare neurons fired mostly just after the 

pyramidal theta peak; radiatum neurons fired preferentially just after the trough, consistent 

with EC and CA3 activity7.

Hippocampal interneurons exhibit heterogeneous firing properties associated with distinct 

morphological features10,55,73, which are not uniformly distributed along the CA1 radial 

axis117. Thus, while our results highlight a laminar organization of firing behavior, 
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interneuron diversity remains an important factor. Consistent with previous work9, our 

results show that interneurons within the same layer receive common inputs, suggesting that 

somatic layer relates to activity dynamics. Fully testing this would require direct cell-type 

identification beyond somatic location, such as optogenetic tagging and/or intersectional 

(input- and molecularly-defined) approaches. Determining whether interneurons of the same 

type behave similarly across layers would help disentangle laminar and cell-type-specific 

influences and clarify how afferent connectivity shapes interneuron activity beyond intrinsic 

properties.

On the significance of neural oscillations

LFP signals predominantly reflect synaptic activity118. For example, in the SWR complex, 

the radiatum sharp-wave reflects synchronized excitatory postsynaptic potentials from CA3 

arriving via Schaffer collaterals18,21,119. Excitatory or inhibitory post-synaptic potentials 

occurring at a regular pace manifest in LFP signals as oscillations (e.g., gamma67). Different 

gamma oscillations are distinguished by the circuit mechanisms driving their rhythmic 

postsynaptic potentials. We identified four fast gamma oscillations with overlapping 

frequency bands, each manifesting in distinct layers of the CA1-DG axis. Particularly, the 

two fast gamma oscillations in CA1 — one in the pyramidal layer and the other in distal 

radiatum — differ in the timing relationships between pyramidal cells and interneurons. We 

also observed a beta component, with overlapping band with slow gamma. Past studies have 

defined slow gamma as the oscillation associated with CA3-to-CA1 inputs, most prominent 

during the descending phase of theta and linked to the CA1 radiatum38,39,41,42,45,46. 

In contrast, the beta component arises near the theta peak and was clearer in the DG 

molecular layers. The differences between beta and slow gamma highlight the need to define 

oscillations by their functional and anatomical substrates rather than by frequency alone. 

In line with this rationale, our study supports recent calls to revise the nomenclature of 

gamma oscillations to better reflect brain network physiology40. For example, hippocampal 

CA1 "slow gamma" would be more aptly termed "CA3-to-CA1 gamma", emphasizing its 

anatomical and functional basis over its frequency band. Similarly, CA1 pyramidal layer 

“fast gamma” would be more appropriately named CA1 “perisomatic gamma”6. Under 

this framework, a given (e.g., gamma) oscillation in another species would be considered 

equivalent if it shares the same cellular basis, even if it has a different frequency. Conversely, 

a signal with an identical frequency but recorded in different regions (e.g., hippocampus and 

visual cortex), would not be regarded as equivalent. Adopting this circuit-based approach 

would reduce confusion while emphasizing the physiological significance of brain rhythms.

Resource Availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, David Dupret (david.dupret@bndu.ox.ac.uk).

Materials availability

This study did not generate new unique reagents
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Star⋆Methods

Key Resources Table

REAGENT OR RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV2-EF1a-DIO-hChR2(H134R)- eYFP-
WPRE

UNC Vector Core Cat #AV3626

AAV9-CAMKII-hChR2(H134R)-eYFP-
WPRE-hGH

Addgene Cat #26969

Experimental models: Organisms/strains

C57BL/6J mice Charles River IMSR_JAX:000664

Ndnf-IRES2-dgCre-D B6.Cg-
Ndnf<tm1.1(folA/cre)Hze>/J

Jackson Laboratory IMSR_JAX:028536

Vip-IRES-cre Vip<tm1(cre)Zjh>/J Jackson Laboratory IMSR_JAX:010908

G32-4 Cre C57BL/6-Tg(Grik4-cre)G32-4Stl/J Jackson Laboratory IMSR_JAX:006474

Sst-IRES-Cre Sst<tm2.1(cre)Zjh>/J Jackson Laboratory IMSR_JAX:013044

PV-Cre B6;129P2-Pvalb<tm1(cre)Arbr>/J Jackson Laboratory IMSR_JAX:008069

Software and algorithms

Intan RHD2000 Intan Technologies RHD2164

Positrack Kevin Allen n/a

Empirical Mode Decomposition in Python Quinn et al.120 https://pypi.org/project/emd/

Hippocampal LFP embedding (Hipp-LFP-
embedding)

Lopes-dos-Santos121, this 
study

concept https://doi.org/10.5281/
zenodo.15275527

Kilosort via SpikeForest Magland et al.122, Pachitariu 
et al.123

n/a

Other

12pm tungsten wires California Fine Wire M294520

Silicon probe NeuroNexus A1x32-6mm-50-177-
H32_21mm

Silicon probe NeuroNexus A1x32-5mm-25-177-
H32_21mm

Silicon probe NeuroNexus A1x64-edge-6mm-20-177-
H64LP_30mm

Silicon probe Cambridge NeuroTech ASSY-236 H3 Chronic 64- Molex

Optic fibers Doric lenses MFC_200/230-
0.37_10mm_RM3_FLT

Head-stage amplifier Intan Technologies RHD2164

473nm diode-pumped solid-state laser Laser 2000 CL473-100

Experimental Model and Study Participant Details

Animals: These experiments used 41 adult mice (4–6 months old; see Table S1). Animals 

were housed with their littermates up until the start of the experiment. All mice held in 

IVCs, with wooden chew stick, nestlets and free access to water and food ad libitum in 

a dedicated housing facility with a 12/12 h light/dark cycle (lights on at 07:00), 19–23°C 

ambient temperature and 40–70% humidity. Experimental procedures performed on mice 

in accordance with the Animals (Scientific Procedures) Act, 1986 (United Kingdom), with 
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final ethical review and approval by the Science Regulation Unit of the UK Home Office for 

the animal studies.

Method Details

Surgical procedure: All surgical procedures were performed under deep anesthesia using 

isoflurane (0.5–2%) and oxygen (2 l/min), with analgesia provided before (0.1 mg/kg 

vetergesic subcutaneous) and after (5 mg/kg Rimadyl (carpofen) subcutaneous) surgery.

For silicon probe recordings, mice were implanted with a single-shank silicon probe (Table 

S1) under stereotaxic control in reference to bregma, using central coordinates -2.0 mm 

anteroposterior from bregma, +1.7 mm lateral from bregma, and an initial depth of 1.5 

mm ventral from the brain surface to span the somato-dendritic axis of CA1 principal 

cells and reach the DG. Following the implantation, the exposed parts of the silicon probe 

were covered with Vaseline® Healing Jelly, after which its plastic drive was secured to 

the skull using dental cement and stainless-steel anchor screws inserted into the skull. Two 

of the anchor screws, both above the cerebellum, were attached to a 50 μm tungsten wire 

(California Fine Wire) and served as ground. For the recordings, the silicon probe was 

positioned along the CA1-to-DG axis, using the rotations applied to its holding screw.

For tetrode recordings, mice were similarly implanted with a single microdrive containing 

14 independently movable tetrodes, targeting the dorsal CA1 hippocampus. Tetrodes were 

constructed by twisting together four insulated tungsten wires (12 μm diameter, California 

Fine Wire) which were briefly heated to bind them together into a single bundle. Each 

tetrode was loaded in one cannula attached to a 6 mm long M1.0 screw to enable its 

independent manipulation of depth. To manipulate CA3 versus EC inputs in CA1 (Figure 

6), mice were also implanted with a microdrive containing 14 independently movable 

tetrodes bilaterally targeting CA1, but further combined with two optic fibers (Doric Lenses 

Inc., Quebec, Canada) positioned bilaterally above CA1. Each drive was implanted under 

stereotaxic control in reference to bregma using the following coordinates. For pyramidal 

layer channels, the span was between AP -1.4 to -2.7 mm and ML 0.9 to 2.4 mm (bilateral). 

Tetrodes that delved deeper than the pyramidal layer were positioned within the range of 

AP –1.9 to –2.5 mm and ML 0.9 to 1.7 mm (bilateral). The initial depth of the tetrodes 

during the implantation surgery was 1.0 mm ventral from the brain surface. The minimal 

distance between neighboring tetrodes was 200 μm. Following the implantation, the exposed 

parts of the tetrodes were covered with paraffin wax, after which the drive was secured to 

the skull using dental cement and stainless-steel anchor screws inserted into the skull. Two 

of the anchor screws, both above the cerebellum, were attached to a 50 μm tungsten wire 

(California Fine Wire) and served as ground.

Viral injections: Mice were injected with one optogenetic construct prior to the 

microdrive implantation surgery, using the surgical procedure described above. Grik4-

Cre heterozygote mice were injected in the CA3 region with a Cre-dependent 

channelrhodopsin-2 (ChR2) construct under the control of the EF1α promoter (UNC 

Cat #AV3626, AAV2-EF1a-DIO-hChR2(H134R)- eYFP-WPRE, 250nL, 2.5x10e11; Figure 

S7D). Wildtype mice were injected in the entorhinal cortex (EC) with a ChR2 construct 
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under the control of the CAMKII promoter (Addgene Cat# 26969, AAV9-CAMKII-

hChR2(H134R)-eYFP-WPRE-hGH, 250nL, 4.5x10e11; Figure S7D). Viral injections were 

performed using a glass micropipette (tip opening ~15–20 μm), which was slowly advanced 

into the brain (~10–20 μm/s) to the following coordinates (relative to bregma for AP/ML 

and brain surface for DV): CA3: AP -2.0 mm, ML -2.3 mm, DV -1.8 mm; EC: AP -4.85 

mm, ML -3.45 mm, DV -1.5 mm. Upon reaching the target site, the pipette was held in 

position for at least 1 minute before initiating viral infusion at a rate of 0.1 μL/min. After 

delivery, the pipette was left in place for at least 5 minutes to minimize viral backflow, and 

then slowly retracted (~10–20 μm/s). The surgical site was closed using 6-0 Ethicon Vicryl 

sutures, and mice were allowed to recover for at least one week before further procedures.

Recording procedure: Following full recovery from the surgery, each mouse was first 

handled in a dedicated handling cloth, connected to the recording system, and exposed 

to an open-field enclosure to be familiarized with the recording procedure over a period 

of one week prior to the start of the experiment itself. During this period, animals were 

habituated to a sleep box (outer dimension: 12 cm width; 16 cm height) containing bedding 

from their home cage. This sleep box served all sleep recordings. When conducting awake 

sessions, the mice were set in open-field enclosures that varied in shape and had maximum 

side dimensions of 46 cm. For recordings using silicon probes, the position of the silicon 

probes was gradually adjusted along the dorsal-ventral axis until the pyramidal cell layer 

SWR events were recorded by uppermost region of the silicon probe. Once positioned, 

the probes remained stable across various recording sessions. For tetrode recordings, the 

tetrodes were individually moved from their original post-surgery location to the CA1 

pyramidal layer, which could be distinctly identified by the pronounced presence of SWR 

events. Before beginning the recordings each day, the position of the tetrodes was fine-tuned 

to optimize both the clarity and the number of spike waveforms, based on visual assessment. 

Moreover, tetrodes targeting layers ventral from the CA1 pyramidal layer, or the dentate 

gyrus were moved downwards until they reached their intended target (see Tetrode feature-

based placement section for details). Once the tetrodes were positioned for that recording 

day, we allowed for a 90-minute break before commencing the first recording session, 

ensuring sufficient time for the tissue to adjust. As a day of recording concluded, the tetrodes 

located in the pyramidal layer were cautiously retracted by about 125μm in the direction of 

the stratum oriens.

Laser stimulation: Laser stimulation was performed during the final two sessions (a 

15-minute exploration and a 20–30-minute sleep/rest) ending the recording day. Light 

(wavelength, 473 nm; intensity, 400–600 μW; Crystal Laser model CL473-100, Laser 2000 

Ltd., Ringstead, UK) was delivered through the 200 μm diameter optic fibers (Doric Lenses 

Inc., Quebec, Canada) combined with the 14 independently moveable tetrodes, as described 

previously. The stimulation protocol consisted of 1-ms pulses administered at intervals 

ranging from 1 to 4 seconds. For the analysis in Figure 6E, data from these sleep and awake 

sessions were combined.

Multichannel data acquisition, position tracking, and laser pulses: The 

extracellular signals from each recording channel were amplified, multiplexed, and digitized 
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using a single integrated circuit located on the head of the animal (RHD2164, Intan 

Technologies; http://intantech.com/products_RHD2000.html; pass band 0.09 Hz to 7.60 

kHz). The amplified and filtered electrophysiological signals were digitized at 20 kHz 

and saved to disk along with the synchronization signals (transistor-transistor logic digital 

pulses) reporting the animal’s position tracking and light pulses. The location of the animal 

was tracked using three differently colored LED clusters attached to the electrode casing 

and captured at 39 frames per second by an overhead color camera (https://github.com/

kevin-allen/positrack/wiki).

Local field potential signals: LFP signals were processed by first applying an anti-

aliasing filter (8th-order Chebyshev type I filter) to the wide band signals sampled at 20kHz. 

These signals were then downsampled to 1,250Hz using the decimate function from the 

signal submodule of Scipy.

Detection of SWR events: For SWR event detection, the LFPs were initially referenced 

against a channel where CA1 ripples were not observed. The resulting differential signal 

was filtered for the ripple band (80–250 Hz, 4th-order Butterworth filter) and for a control 

high-frequency band (200–500 Hz, 4th-order Butterworth filter). Instantaneous envelopes 

and phases for all ripple analyses were computed using the Hilbert transform. For tetrode 

recordings where all tetrodes exhibited ripples, no referencing was applied.

Candidate SWR events were identified when the peaks of the ripple band envelope exceeded 

a threshold set at five times its overall median value. If multiple peaks occurred within 

a 20-ms timeframe, only the highest peak was retained. The onset and offset of each 

candidate event were defined as the points where the envelope dropped below half the 

detection threshold. The number of ripple cycles within each event was calculated as the 

difference between the unwrapped phase at the offset and the onset. For example, an 

unwrapped phase difference of 1800° from onset to offset corresponds to five cycles, as 

1800/360=5. The event’s mean frequency was calculated by dividing the number of cycles 

by its duration in seconds. For example, an event with 6.75 cycles lasting 50 ms would have 

a mean frequency of 135 Hz (6.75/0.05). Finally, each candidate event underwent a series 

of checks: (1) The ripple band power (derived from squaring the mean ripple amplitude) in 

the detection channel should exceed twice the magnitude obtained for the reference channel. 

This confirms that the detected events in the differential signal had a stronger presence in 

the detection channel; (2) The mean frequency of the event should be above 100 Hz; (3) The 

event had to include at least four complete ripple cycles; (4) The ripple band power had to be 

at least twice that of the control high-frequency band.

Determination of the reference CA1 pyramidal layer channel: For recordings, 

a single reference channel was used to analyze SWR events and theta oscillations. The 

reference channel was defined as the one with the highest ripple band score, calculated as 

the power in the ripple band (100–250 Hz) divided by the power in a surrounding frequency 

band (70–300 Hz). Power in each band was estimated using a Welch spectrum with 4-second 

Hann windows and 50% overlap.
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Extraction of theta oscillations from LFPs: Theta oscillations were extracted from 

LFPs using the masked Empirical Mode Decomposition method 120,124,125. The mask sift 

procedure was employed with mask frequencies set to 350, 200, 70, 40, 30, and 7 Hz, 

following parameters optimized by Quinn et al.92 based on Fosso and Molinas126. The 

amplitude of each mask was set to three times the standard deviation of the input signal. 

This procedure decomposes each LFP signal into oscillatory components, termed intrinsic 

mode functions (IMFs), ordered from higher to lower frequency components. Using the 

parameters above, the process yielded six IMFs and a residue, with IMF-6 effectively 

isolating theta oscillations.

To delineate individual theta cycles, we first identified the peaks (local maxima) and troughs 

(local minima) of the theta IMF as derived previously. The residue of the LFP, not captured 

by the first six IMFs, was defined as the lower-frequency component of the signal, and 

its envelope was used as an amplitude threshold for retaining peaks and troughs in the 

subsequent step. Each peak-trough-peak sequence was then defined as a candidate theta 

cycle. Valid cycles were those with peak-trough and trough-peak intervals falling within 31 

to 100 ms (corresponding to half the period of cycles with frequencies ranging from ~16 to 

4 Hz). Additionally, peak-to-peak intervals had to range between 71 ms (~14 Hz) and 200 

ms (~5 Hz). For each validated cycle, six control points were identified: the zero-crossing 

preceding the first peak, the peak itself, the zero-crossing following the peak, the trough, 

and the zero-crossing after the trough. The instantaneous theta phase for each timestamp was 

then computed using linear interpolation between these control points 46,65.

Current source density analysis: In this study, we applied CSD analysis 61,127 

to the event-triggered averages from LFP recordings captured via linear silicon probes. 

These averages were calculated by aligning LFP signal intervals to event timestamps. For 

example, when analyzing theta oscillations, averages were centered around the descending 

zero-crossings of detected theta cycles. Once these averages were established for specific 

events, the current source density signal at channel n and a given time point was computed 

as:

CSDn = − LFPn − 1 − 2 ⋅ LFPn + LFPn + 1

where, n−1 and n+1 refer to the channels immediately above and below n. To standardize 

the spatial resolution of CSDs across silicon probes with varying channel spacings, Gaussian 

kernel smoothing was applied with a standard deviation of 50 μm.

Dentate spikes detection and classification: Dentate spikes in silicon probe 

recordings were identified during sleep/rest periods, as they predominantly occur in these 

brain states 12,128. LFPs from the dentate gyrus region were initially referenced by 

subtracting signals from a channel located at the top of the probe, typically positioned in the 

cortex or the upper oriens/alveus region. The resulting differential signal was then filtered 

within a frequency range of 1–200 Hz using a 4th-order Butterworth filter. Peaks in the 

filtered differential signal exceeding a threshold of seven times the median absolute value 

were identified as candidate dentate spike events. To eliminate high-amplitude artifacts, 
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candidates with peaks exceeding a threshold—defined as the 75th percentile of the peak 

distribution plus 20 times its interquartile range—were excluded. This detection procedure 

was applied to channels within the dentate gyrus region, identified through visual inspection, 

and events from these channels were subsequently combined. If multiple events were 

detected within a 50-ms window, only the event with the highest peak was retained.

We applied PCA to dentate spikes to classify them into DS1 and DS2, based on established 

findings that these subtypes reflect distinct laminar patterns in the hippocampus12,59. More 

specifically, we analyzed each event by computing the CSD from the pyramidal layer 

channel to the deepest dentate gyrus channel at its peak. Principal Component Analysis 

(PCA) was then applied to these CSD vectors, projecting each individual CSD onto the 

first principal component. The first principal component of the CSD across all detected DS 

events effectively distinguished these subtypes by identifying the location of their sources 

and sinks. Classification was performed by applying a 2-component Gaussian Mixture 

Model (GMM) to the first principal component projections. In recordings that included both 

the molecular and granular layers of the dentate gyrus, this method consistently identified 

two distinct CSD patterns, each with primary sinks at different positions within the dentate 

gyrus channels. The pattern with its primary sink positioned further from the hilus was 

defined as DS1, while DS2 was assigned to the pattern with its sink closer to the hilus. If the 

GMM-defined classes revealed identical primary sinks, all dentate spike events were labeled 

as DS1, indicating the absence of a granular layer channel in the recordings.

Alignment for obtaining mean waveforms from LFPs: Throughout this manuscript, 

when computing triggered averages and mean waveforms, we aligned SWR events to the 

peak of the ripple envelope and DS events to the peak of the DS signal in the LFP. In 

contrast, theta oscillations are composed of continuous cycles, making the choice of a 

reference point less obvious. Although peaks or troughs may seem like natural candidates, 

aligning to them can introduce distortions. Aligning to peaks sharpens the average at that 

point but increases jitter at the trough due to variability in cycle duration. To minimize such 

distortions, we used the descending zero crossing of the theta oscillations recorded in the 

pyramidal layer as the reference point.

LFP feature embedding: The silicon probe recording dataset was used to construct the 

LFP feature space (“Hipp-LFP-embedding”; see Key Resources Table). For each mouse, 

sharp-wave and theta waveforms were computed for each recording channel, spanning 

from the CA1 pyramidal layer to the DG granular layer (Figure S2A). These waveforms 

represent the average raw LFP signals for individual channels, centered around either the 

ripple power peaks or the descending zero-crossings of theta (see section above). Theta 

and SWR waveforms were extracted using different window sizes to account for their 

distinct durations. Given that theta oscillations have a dominant frequency of ~8 Hz, we 

used a 150-ms window to capture their full cycle waveform with a margin. In contrast, 

SWR-related waveforms were extracted using a 500-ms window to encompass their full 

average deflection around ripple envelope peaks. To ensure uniformity across mice, channels 

were sampled at 50 μm steps (40 μm for mice with 20 μm-spaced channels; see Table S1). 

Each waveform was individually z-scored to emphasize waveform shapes rather than relative 
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amplitudes across channels. Concatenating SWR and theta waveforms directly would lead 

to an imbalance in feature dimensionality, as SWR windows contain over three times 

more LFP data points than theta windows. To address this, we applied PCA separately to 

each waveform type and retained the first four principal components from each, ensuring 

balanced dimensionality while preserving most of the variance for the embedding input 

(Figure S2B).

Using these principal component projections, the embedding was computed with the Isomap 

method from the manifold submodule of scikit-learn, using parameters n_neighbors=15 

and n_components=2. We used Isomap because our goal was to obtain a low-dimensional 

representation in which Euclidean distances reflect geodesic distances in the original space. 

Given our goal was to extract a trajectory mapping the evolution of theta and SWR 

waveforms across anatomical position, preserving global structure was essential. Other 

methods, such as t-SNE and UMAP, prioritize local structure and may distort long-range 

relationships. Although UMAP parameters can be tuned to better capture global features (for 

example, by increasing the number of neighbors) its primary goal is the preservation of local 

structure. Isomap, by contrast, is explicitly designed to preserve global geometry, making 

it a more natural choice for capturing the continuous, layer-dependent structure in our LFP 

data.

For constructing the k-nearest neighbor graph in Isomap, we used n_neighbors=15, ensuring 

a balance between preserving local structure and maintaining global relationships. Given our 

dataset size (136 channels in total, ~22.67 channels per mouse), this choice ensures that 

each point connects to a meaningful proportion of the dataset. Empirical testing confirmed 

that performance remained stable within a range of n_neighbors = 10–20, supporting the 

robustness of this choice. For computing geodesic distances in Isomap, we used Dijkstra’s 

algorithm, as it ensures computational efficiency and is the standard choice for sparse 

graphs. We used a 2D embedding as it captures 91.5% of the variance in the transformed 

data (SWR and theta waveforms after PCA). This choice also enhances interpretability, as 

2D embeddings allow clear visualization. To further validate this, we evaluated classification 

performance in terms of mutual information (as in Figure 1H) while varying the number of 

Isomap dimensions. We found that performance peaked at 2–3 dimensions, confirming that 

additional dimensions do not provide non-redundant information for layer discrimination.

We next derived a trajectory connecting layer centers. To enhance resolution between 

distantly spaced clusters in the feature space (e.g., radiatum and lacunosum-moleculare), 

intermediate points were added before interpolation. The number of intermediate points 

between successive layer pairs was calculated by dividing the distance between points in the 

2-D feature space by 20. Using this count, we selected an equivalent number of equidistant 

channels in the anatomical space for each mouse. Subsequently, averages for each control 

point (layer coordinates and intermediate points) were calculated across all mice. The final 

trajectory (Figure 1F, black trace) was determined by applying quadratic interpolation to 

these control points.

Trajectory consistency across recording days and mice: We computed Fréchet 

distances to quantify trajectory similarity within and across animals. The similarity between 

Lopes-dos-Santos et al. Page 20

Cell Rep. Author manuscript; available in PMC 2025 June 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



trajectories was defined as 10 divided by their Fréchet distance (the scaling factor of 10 

was merely used to bring values closer to 1 for visualization). To assess the significance 

of the observed similarities, we compared them to a null distribution generated from 

surrogate trajectories (Figure 1G). Specifically, we (1) computed the Fourier transform 

of each trajectory, (2) applied circular shifts to the phases of its frequency components, 

and (3) reconstructed the trajectory using the inverse Fourier transform. Unlike simpler 

methods that randomly reorder trajectory channels, this Fourier-based surrogate procedure 

preserves spectral content and mean position, generating more realistic trajectories while 

selectively disrupting their precise structure. We computed 10,000 surrogate similarities for 

each trajectory pair. To compile group results, we normalized the observed similarity values 

relative to their corresponding surrogate distributions as:

sz = s − μsurrogate
σsurrogate

where s is the observed similarity of a trajectory pair, μsurrogate is the mean of the surrogate 

distribution (i.e., the expected similarity for surrogate trajectories with matched spectral 

characteristics), and σsurrogate is the standard deviation of the surrogate distribution.

Classification of layers from feature space projections: Layer separability within 

the feature embedding was assessed using cross-validated classification. A leave-one-out 

methodology was employed, where each classifier was trained on all data points except 

one, which was reserved for testing. Thus, each mouse contributed a single layer channel, 

meaning the classifiers primarily relied on datasets from other mice for layer decoding. 

A k-neighbor classifier was used (implemented using the ‘neighbors’ submodule of 

sklearn; parameters: weights=‘uniform’, algorithm=‘auto’, and k=4). The choice of k=4 was 

determined by the smallest sample size across layers.

Embedding projection variability as function of sample size: To evaluate how the 

number of network events used to compute average LFP waveforms affects the embedding, 

we performed a subsampling analysis for both SWR events and theta cycles. LFP waveforms 

were obtained as before, but using randomly selected subsets of events (either theta cycles or 

SWR events). Importantly, subsets were always composed of consecutive events rather than 

uniformly sampled across the session, allowing us to have an idea of how much continuous 

data is required for projections to converge. For each event count, we generated up to 10,000 

projected data points (e.g., if 5,000 events were available, one projection was generated for 

each possible consecutive subset). Each average data point was projected onto the same 

embedding constructed previously (Figure 1). When subsampling SWR events, all available 

theta cycles were used (and vice versa). Figures 7A and 7C show the resulting projection 

histograms across different sample sizes for representative layers and recording sessions. 

To quantify projection variability (spread) for each layer and subsample size, we computed 

the square root of the determinant of the 2D covariance matrix of the projected points 

(Figure 7B,D, top panels). To assess how subsampling affected classification performance, 

we applied the same k-nearest neighbors classifier trained in Figure 1H to assign a layer 

label to each projection. The probability of correct classification is shown in the bottom 
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panels of Figures 7B and 7D for each layer as a function of the number of SWR events 

or theta cycles, respectively. For this classification analysis, we grouped l-m, hf, and om 

layers into a single category, as they were not distinguishable in the original classifier results 

(Figure 1H).

Supra-theta wavelet spectrograms: Spectrograms were generated using the complex 

Morlet Wavelet Transform. A range of 24 logarithmically spaced frequencies, spanning from 

18 Hz to 310 Hz, was used unless stated otherwise. Each wavelet kernel was L1-normalized, 

ensuring that the sum of the absolute values of its elements equals 1. This normalization 

standardizes the wavelet kernel's magnitude, ensuring that differences in amplitude across 

frequency components reflect the input signal rather than the kernel's scale.

Gamma filtering and instantaneous phase and amplitude: For amplitude and 

phase analyses of specific gamma oscillations, LFP signals were filtered within the relevant 

bands using a 4th-order Butterworth filter. The cutoff frequencies were defined as follows: 

20–45 Hz for slow gamma, 50–100 Hz for mid gamma, and 100–250 Hz for fast gamma. 

Instantaneous amplitude and phase were then computed using the Hilbert transform.

ICA-based extraction of fast gamma oscillations: Isolating fast gamma oscillations 

poses a challenge due to their relatively low amplitude, especially in channels that exhibit 

higher amplitude mid gamma oscillations. Any overlap with mid gamma oscillations can 

contaminate the signal filtered for the fast gamma range, given the comparable magnitude of 

the high-frequency tail of the mid gamma spectrum and the fast gamma oscillation itself. To 

address this, we adopted an ICA-based method inspired in previous work 129. This approach 

leverages spatial data from silicon probe recordings to differentiate fast gamma from mid 

gamma oscillations. Specifically, ICA was applied to LFP traces extending 200 μm around a 

targeted channel with fast gamma interest (e.g., pyramidal, distal radiatum, mid moleculare, 

or granular layer), and we extracted independent components with peak frequencies above 

100Hz. We used the amplitude of such signals for the fast gammas in Figure 2B.

Determination of gamma main frequencies: To identify the primary frequency 

components of each gamma oscillation, we first detected the strongest bursts within 

theta cycles by locating envelope peaks in the appropriate gamma band during individual 

cycles and retaining only the top quartile of these peaks. For fast gammas, see ICA-based 

extraction of fast gamma oscillations section above. Using these peaks, mean spectra were 

generated by averaging wavelet spectrograms within a 40-ms window centered on the burst 

peaks. Before averaging across mice (Figure 2C), the triggered average spectrogram for each 

mouse was normalized by its overall standard deviation.

Gamma speed modulation: To assess whether the amplitude of different gamma 

oscillations across layers was modulated by speed, we quantified speed modulation 

separately for each of the six identified gamma bands. For each recording day, we divided 

theta cycles into six equally populated speed quantiles during open field exploration. For 

each quantile, we computed the mean amplitude of each gamma rhythm, yielding a six-bin 

amplitude-versus-speed curve per gamma and recording day. To normalize across sessions, 

amplitude values were divided by their mean across bins and log2-transformed. Speed 

Lopes-dos-Santos et al. Page 22

Cell Rep. Author manuscript; available in PMC 2025 June 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



modulation was then quantified as the slope of a linear regression fit to the normalized 

amplitude values across the six speed quantiles.

Tetrode feature-based placement: To target layers below CA1 pyramidal cells with 

tetrodes, we employed a stepwise, gradual lowering approach. Short sessions (typically 5–10 

minutes) were recorded during both sleep and wakefulness to project LFP features onto 

the embedding (as depicted in Figure 1D,E, and Figure S2). Tetrodes were adjusted by 

no more than ~60 μm within a 20-minute interval. Before recording sessions for spiking 

activity analysis, we waited 90 minutes after the last tetrode adjustment to allow tissue 

accommodation and optimize signal stability.

For the analysis of spike correlations with specific gamma oscillations in the tetrode data, 

we focused on the appropriate layer corresponding to each rhythm (Figure 4, 5 and 6). Slow 

gamma was consistently analyzed from radiatum channels, mid gamma from lacunosum-

moleculare channels, and each fast gamma from its respective layer.

Spike detection and unit isolation: Spike sorting and unit isolation were performed 

using an automated clustering pipeline implemented via Kilosort within the SpikeForest 

framework 122,123. For tetrode data, Kilosort restricted templates to channels within each 

tetrode bundle while masking all other recording channels. The resulting clusters were 

manually verified by inspecting cross-channel spike waveforms, auto-correlation histograms, 

and cross-correlation histograms. Units included in the analyses exhibited stable spike 

waveforms throughout the entire recording day.

Principal cell versus interneuron classification: To assess waveform consistency for 

each unit, we analyzed the waveform with the maximum amplitude across tetrode channels 

within each cluster. The primary objective was to evaluate the magnitude of a unit’s mean 

waveform amplitude relative to the standard deviation of all its spikes. This metric, referred 

to as the waveform score, was defined as:

wvscore = ∑
i = 1

n wi/σwi
2

n

where wi is the value of the mean waveform at sample i, σwi is the standard deviation at 

sample i across all spikes, and n is the number of waveform samples (in this context, n=32). 

This metric quantifies the relative magnitude of the mean waveform amplitude compared to 

spike-to-spike variability. Clusters with a waveform score below 0.75 or a refractory period 

violation exceeding 2% (measured as the proportion of intervals shorter than 2 ms in the ISI 

distribution) were classified as multi-units and excluded from further analyses. Additionally, 

clusters with positive spikes were disregarded, as these likely originated from non-somatic 

spikes 130. Only units meeting all these criteria were considered well-isolated and included 

in subsequent analyses.

Finally, units were categorized as putative interneurons or pyramidal cells based on the 

width of their waveform, measured by trough-to-peak latency. To improve resolution, the 

32 waveform points sampled at 20 kHz were upsampled by a factor of 100 using quadratic 
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interpolation (via the interpolate function from scipy). In a previous dataset of ~4,000 

well-isolated neurons, a bimodal distribution of trough-to-peak latency was observed. This 

distribution was modeled using a 1-dimensional, 2-component Gaussian Mixture Model 

(GMM) from scikit-learn, and the classification threshold was set at the intersection of 

the two Gaussian components. Applying this threshold to the current dataset, units with 

latencies above the threshold were classified as putative pyramidal cells, and those below as 

putative interneurons.

Gamma and ripple trough triggered averages: In Figures 4B, 4E, 4H, 5E, and 6H, 

mean spiking activity and LFP signals were computed around the most prominent troughs 

of the targeted gamma rhythms or ripples. LFP signals were first filtered within the relevant 

frequency range for the specific layer, as described earlier. For gamma oscillations, the 

deepest trough within each theta cycle was identified, and only the top quartile of these 

troughs (in terms of amplitude depth) was used for triggered-average analyses. By aligning 

spike trains or LFP signals to a single gamma trough per theta cycle, this analysis minimizes 

the risk of artificially inflating gamma rhythmicity by mitigating biases in the triggered 

averages that could result from the band-pass filtering process. Similarly, for ripple-triggered 

averages, pyramidal LFPs were filtered within the 100–250 Hz range, and the deepest ripple 

troughs from each SWR event were used for alignment.

Spike to phase coherence analysis: Theta oscillations are asymmetrical (non-linear), 

leading to an uneven distribution of phases. In recordings from the pyramidal layer, the 

rising phase is shorter than the falling phase, resulting in an overrepresentation of the latter 

in the theta phase distribution. This asymmetry can bias coherence analyses by artificially 

increasing the association of spikes with the longer falling phase. To correct for this, we 

normalized the spike-phase coherence by accounting for the likelihood of a spike occurring 

in each theta phase bin. This was achieved by dividing the distribution of theta phases 

associated with neuron spikes by the overall theta phase distribution. Both distributions were 

represented as histograms with 64 equally spaced phase bins. Spike-to-phase coherence was 

then quantified using the mean vector length, where each phase bin center was weighted by 

its corresponding probability.

For gamma phase coherence, the methodology mirrored that of the theta analysis but 

included a modification to account for the transient nature of gamma oscillations. A 

threshold based on the gamma envelope was introduced, selecting only spikes and gamma 

phases where the envelope exceeded its 75th percentile. This approach ensured the data 

reflected periods with genuine gamma activity in the signal. For ripple phase coherence, 

only phases between the onset and offset of the events were considered.

For a given oscillation, phase coherence analysis was restricted to units with at least 250 

spikes within that oscillation periods. To evaluate significance, a spike shift control was 

employed. For each neuron, spikes were shifted to random time points matching the original 

theta phase and gamma amplitude of their respective time points 46. This surrogate process 

was repeated to generate a null hypothesis distribution comprising 10,000 surrogate values. 

The p-value for each neuron was calculated as the proportion of surrogate values that 

matched or exceeded the observed coherence value, representing the likelihood of that level 
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of coupling occurring by chance. Only units with significant coupling (p < 0.01) were 

included for mean phase estimation.

Of note, when estimating the mean firing phases of neurons, all analyses were performed in 

the continuous phase domain as described above. Alignments to specific reference points 

(e.g., the descending zero-crossing of theta oscillations) were used only for triggered 

averages of instantaneous firing rates and were not used for quantifying mean phases or 

spike-to-phase coherence.

Classification of deep and superficial principal cells: In the analyses shown 

in Figure 5, principal cells were categorized as deep or superficial based on the LFP 

features recorded by the tetrodes. The classification was determined using the linearized 

projection of these features onto the feature embedding (Figure 1E, right). The distribution 

of these projections across the dataset was distinctly bimodal. To model this, we applied 

a 1-dimensional, 2-component Gaussian Mixture Model (GMM) using scikit-learn. The 

resulting Gaussian distributions, superimposed on the projection data, are shown in Figure 

5B. The classification threshold for deep versus superficial cells was set at the intersection of 

these Gaussians, approximately corresponding to a value of 5.5.

Anatomy: After completion of the electrophysiological recordings, mice were 

anaesthetized with pentobarbital and transcardially perfused with 4% PFA (150ml, 8 – 

10 ml/min). Subsequently, the heads with implanted tetrode microdrives were post-fixed 

overnight at 4°C. The next day, the implanted microdrives were removed and the brains 

were resected followed by post-fixation in 4% PFA for 2 hours. Then brains were either 

sectioned at 50 micrometers on a vibratome (Leica Microsystems VT1000S) or embedded 

in gelatine and cryoprotected to be sectioned on a freezing microtome (Epredia HM 450 

with a Physitemp BFS-40MPA freezing stage). For embedding, brains were first incubated 

overnight in 10% sucrose 0.1M Phosphate Buffer solution at 4°C. Then embedded in 

gelatine (12% gelatine / 10% sucrose), stored in 30% sucrose 0.1M PB overnight at 4°C for 

cryoprotection, and sectioned the following day utilizing the freezing sliding microtome 131. 

Sections were stained with 4',6-diamidino-2-phenylindole (DAPI; 0.5 μg/ml, Sigma-Aldrich, 

cat# D8417) diluted in PB to label cell nuclei, mounted, and cover-slipped with Vectashield 

mounting medium. Images were acquired using a Zeiss LSM 880 confocal microscope 

equipped with Plan-Apochromat 10x/0.45, 20x/0.8 objectives. DAPI and an empty channel 

were imaged using excitation wavelengths of 405, and either 458 or 633 nm.

Quantification And Statistical Analysis

Data analyses were performed using Python 3.10 with the following packages: scikit-learn 

1.2.2, NumPy 1.26.4, SciPy 1.14.1, Matplotlib 3.10.0, and Pandas 1.5.3.

Confidence intervals were calculated using a standard bootstrapping procedure. Original 

data points were resampled with replacement, and the mean was computed for each 

resample. This process was repeated 100,000 times to generate a bootstrap distribution 

of means. The 99% confidence interval was defined as the range between the 0.5th and 

99.5th percentiles of this distribution. For bootstrap-based p-values, a null distribution of 
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differences between resampled groups was generated. The one-tailed p-value was calculated 

as the proportion of the null distribution with values equal to or exceeding the absolute 

observed mean difference. For two-tailed tests, this p-value was multiplied by 2. Permutation 

tests were used to assess the significance of differences between cell groups by comparing 

the observed mean difference to a null distribution generated through random reassignment 

of group labels. For example, to evaluate the mean rate difference between deep and 

superficial cells, cell labels were randomly shuffled, and the mean difference for each 

permutation was recorded. This process was repeated 100,000 times to create the null 

distribution, which represents the distribution of mean differences expected under random 

group assignments. For one-tailed tests, the p-value was computed as the proportion of 

the null distribution with values equal to or exceeding the observed mean difference. For 

two-tailed tests, the resulting one-tailed p-value was multiplied by 2.

To assess the significance of light-responsive cells in Figure 6E, we compared each cell’s 

firing rate in a 10-ms window after laser onset to its baseline rate measured over the 1 s 

preceding the laser. The observed firing rate increase (post-laser onset minus baseline) was 

calculated for each cell. Statistical significance was assessed using a permutation test, where 

baseline and post-laser onset firing rates were randomly swapped with a 50% probability 

in each trial, and the difference was recalculated. This process was repeated 100,000 times 

to generate a null distribution of firing rate differences expected by chance. A cell was 

considered significantly responsive if its observed increase exceeded the 99th percentile of 

this null distribution. To exclude small effect sizes, the post-laser onset firing rate also had to 

exceed the baseline mean by at least two standard deviations. Results were consistent across 

different baseline window sizes, ranging from 10 ms to 1000 ms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Any additional information required to reanalyze the data reported in this paper 
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Figure 1. Identification of hippocampal layers using electrophysiological patterns.
(A) Schematic of the hippocampal layers recorded using a silicon probe implanted along the 

CA1-DG axis.

(B) Sample data showing the three network events used for layer identification. Scale bars: 

100 ms.

(C) Example activity profiles for layer determination (Mouse 1; see Figure S1 for other 

mice). The sharp-wave ripple panels display ripple power across layers, CSD analysis of 

LFPs aligned to ripple power peaks, and CSD values at the ripple power peak. The theta 
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oscillation panels display the CSD aligned to the pyramidal theta descending zero-crossing, 

alongside normalized theta amplitude and phase shift across layers. The dentate spike panels 

depict CSD analysis for DS1 and DS2, with their respective CSD values at their peaks.

(D) Sharp-wave and theta waveforms for CSD-defined layers (one waveform per mouse).

(E) Construction of the embedding trajectory. The sharp-wave and theta waveforms 

recorded across layers were used to generate the embedding. Shown are the two ISOMAP 

components. To compute a trajectory, embedding coordinates from each layer and additional 

intermediate points were averaged across mice. Gray lines represent individual mice; color-

coded circles show the across-mice average per layer; black circles denote intermediate 

points. The trajectory was defined by interpolating between the average coordinates.

(F) Left: LFP-based feature embedding. Each cross represents one mouse and is color-coded 

as in (D); circles indicate across-mice layer averages. The trajectory is shown as a black 

trace. Right: Linearized representation of the trajectory.

(G) Trajectory consistency analysis. Trajectory similarity was quantified via Fréchet 

distances. Distances were computed across sessions within a mouse or across different mice. 

Left: Example of two actual trajectories from different mice and a corresponding surrogate. 

Top right: Trajectory similarity for a representative pair along with its surrogate distribution. 

Bottom right: Bootstrap distributions for normalized similarity (z-scored using the surrogate 

distribution’s mean and standard deviation) for within-mouse and across-mice pairs.

(H) Left: Confusion matrices for a classifier predicting the layer from feature space 

coordinates. Matrix entries represent the likelihood of predicting a specific layer given the 

true layer. Right: Mutual information between the actual and the predicted layers, compared 

to a control distribution obtained by shuffling layer labels. Abbreviations: pyr, pyramidale; 

rad, radiatum; l-m, lacunosum-moleculare; hf, hippocampal fissure; omol, outer molecular; 

mmol, mid molecular; imol, inner molecular; gr, granular.
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Figure 2. Theta-nested gamma profiles across individual CA1-to-DG layers.
(A) Each layer is represented by two panels displaying theta-nested gamma amplitudes. Left 

panels show both local (solid lines) and CA1 pyramidal layer LFPs (dashed lines), aligned 

to the descending zero-crossing of the pyramidal layer theta. These are overlaid on the 

gamma-frequency amplitudes. Right panels show each frequency’s amplitude normalized to 

its minimum value. Data are from a representative mouse (see Figure S3A for other mice).

(B) Z-scored amplitudes for gamma bands across layers relative to the pyramidal layer theta 

phase.
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(C) Normalized power spectra calculated for each gamma rhythm in specific layers. In both 

(B) and (C), solid lines denote the mean across mice, and shaded regions indicate 95% 

confidence intervals.

(D) Schematic illustrating gamma oscillations across hippocampal layers. Each gamma 

oscillation is placed at the theta phase where it reaches its maximum amplitude. The mid-

gamma rhythm (dark orange) appears in all layers but is shown in the lacunosum-moleculare 

layer, where its amplitude is strongest.
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Figure 3. Validation of LFP profiles using tetrode placement in the feature embedding.
(A-C) Tetrode placement in the radiatum layer. (A) Trajectories in feature space, with 

each triangle representing a tetrode's projection for a recording session (connecting lines 

indicate session sequence). Each panel shows an example tetrode. (B) Sharp-wave and 

theta-gamma profiles obtained from these tetrodes immediately before perfusion. Left: SWR 

waveform obtained from the corresponding tetrode (solid line) and from the pyramidal layer 

reference (dashed line); heatmap displays amplitude across frequencies. Middle and right 

panels: Theta-gamma profiles as shown in Figure 2. (C) Histological confirmation of tetrode 
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placement. Red arrowheads indicate tetrodes tips, with layers visualized using DAPI staining 

(white) and an empty channel (green). Scale bars: 100 μm.

(D-F) Same analysis for tetrodes targeting the lacunosum-moleculare layer. Each marker 

represents same-day sessions, with triangles and squares indicating consecutive days.

(G-I) Same analysis for tetrodes targeting the DG molecular layer.

(J-L) Same analysis for tetrodes targeting the DG granular layer. Circles indicate a third 

recording day.
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Figure 4. Spiking correlates of CA1 principal cells and interneurons to gamma rhythms.
(A-C) Spike correlates of radiatum slow gamma. (A) Example silicon probe recordings 

showing radiatum slow gamma. Individual slow gamma troughs are marked by green 

triangles. (B) LFP averages triggered by slow gamma troughs (top panel), along with the 

averaged activity of principal cells (middle panel) and interneurons (bottom panel). Data 

are aggregated from 22 recording days across 10 mice. Within each recording session, the 

combined activity of all principal cells or all interneurons was aligned to a single slow 

gamma trough per theta cycle. Session averages were combined to produce the displayed 
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grand average. (C) Average gamma phase histogram for principal cells and interneurons. 

Only cells significantly coupled to slow gamma (p<0.01) were included: 492 principal cells 

and 82 interneurons. Slow gamma mean firing phase: 176° for principal cells (99% CI: 

173 – 179), and 179° for interneurons (99% CI: 172 – 185). Phase difference (principal – 

interneurons): -2.5° (99% CI: -9.7 – 4.2), bootstrap p = 0.345.

(D-F) Same as in (A-C), but for lacunosum-moleculare mid gamma. (E) Same as in (B) 

using sessions with a lacunosum-moleculare tetrode (32 recording days from 13 mice). 

(F) Same as (C), but for mid gamma. Includes 333 principal cells and 70 interneurons 

significantly coupled to mid gamma. Mid gamma mean firing phase: 258° for principal cells 

(99% CI: 254 – 262), and 274° for interneurons (99% CI: 255 – 293).

(G-I) Same as in (A-C), but for fast gamma oscillations. (G) Silicon probe recordings 

showing fast gamma oscillations. (H) Same analysis as in (B), but for pyramidal fast gamma, 

radiatum fast gamma and ripples. Pyramidal fast gamma and ripple data: 59 recording 

days (including both awake and sleep periods) from 20 mice. Radiatum fast gamma data: 

17 recording days from 11 mice with a distal radiatum tetrode. (I) Same analysis as (C). 

Includes 789 principal cells and 220 interneurons significantly coupled to pyramidal fast 

gamma, and 112 principal cells and 42 interneurons significantly coupled to radiatum fast 

gamma. Pyramidal fast gamma mean firing phase: 221° for principal cells (99% CI: 219 

– 224), and 243° for interneurons (99% CI: 238 – 248); phase difference (principal – 

interneurons): -21.8° (99% CI: -27.2 – -16.3), bootstrap p < 10-5. Radiatum fast gamma 

mean firing phase: 170° for principal cells (99% CI: 160 – 180), and 134° for interneurons 

(99% CI: 113 – 152); phase difference (principal – interneurons): 36.5° (99% CI: 13.9 – 

57.5), bootstrap p = 8x10-5.
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Figure 5. Firing behavior of CA1 principal cells in deep and superficial pyramidal sublayers.
(A) Axial profile of SWR waveforms recorded with a silicon probe (20 μm contact 

spacing). Left: example SWR event. Middle: average SWR waveform across all events in 

the session. Right: theta-nested gamma profile and the local LFPs aligned to the descending 

zero-crossing of pyramidal theta, for the channels indicated by arrows.

(B) Classification of principal cells as deep and superficial. Left: distribution of tetrodes 

projected onto the linearized trajectory (as in Figure 1F). Overlaid traces represent Gaussian 

components from a GMM fit. Middle: SWR waveforms from tetrodes assigned to each 

Gaussian component. Right: mean theta-nested gamma profiles from the same tetrodes.

(C) Mean instantaneous firing rate of deep and superficial pyramidal cells during theta and 

SWRs. Left: activity aligned to the descending zero-crossing of pyramidal theta for both 

populations. Right: activity aligned to the ripple power peak.

(D) Theta coupling of deep and superficial pyramidal cells. Left: histograms of the 

mean firing phase for both populations. Right: distribution of coupling strength for each 

population.

(E) Z-scored firing rate of deep and superficial cells, aligned to the troughs of CA1 gamma 

oscillations and ripples (one trough per theta cycle). Lines above each panel display the 
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average LFP from the corresponding layer. Solid lines indicate means, shaded areas indicate 

99% bootstrap confidence intervals.
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Figure 6. Firing behavior of CA1 interneurons in radiatum and lacunosum-moleculare layers.
(A) CA1 laminar profile reconstructed from tetrode recordings. Sharp-wave and theta 

waveforms were recorded using independently movable tetrodes. Average waveforms from 

tetrodes at varying distances from the pyramidal layer are shown. Gaussian fits (from Figure 

1F) are displayed on the right (solid lines denote the 99% fit areas). Units recorded within 

these ranges were classified as radiatum (rad) or lacunosum-moleculare (l-m) interneurons.
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(B) Example rad and l-m neurons. Left: broadband signals where neurons were detected. 

Adjacent panels show mean spike waveforms (shading denotes interquartile range). Right: 

SWR response and theta phase modulation for each neuron.

(C-E) Rad and l-m interneurons respond to distinct upstream inputs. (C) Optic fibers and 

tetrodes were implanted in CA1 to monitor neuronal activity during optogenetic stimulation 

of CA3 or EC terminals (see Methods). (D) CA3→CA1 inputs were targeted by transducing 

CA3 cells with a Cre-dependent channelrhodopsin-2 (ChR2)-YFP vector in Grik4-Cre mice; 

EC→CA1 inputs were targeted by transducing EC cells with a CamKII-driven ChR2-YFP 

construct in wild-type mice (Figure S7C). Images show ChR2-YFP-labeled terminals in 

CA1 from CA3 (left) and EC (right). Scale bars, 100 μm. (E) Optogenetic stimulation of 

CA3→CA1 inputs activated 64.5% of pyramidal layer interneurons (PyrInt; 40/62) and 

34.8% of rad interneurons (23/66), but no l-m cells (0/18). EC→CA1 input stimulation 

recruited 42.3% of l-m cells (11/26), with minimal activation of PyrInt (2/46) and no rad 

neuron responses (0/63). Significant responses were defined as firing rates exceeding the 

baseline mean by 2 standard deviations and independently confirmed with a p < 0.01 

threshold in a permutation test.

(F) Mean firing rate of PyrInt, rad and l-m interneurons during SWRs.

(G) Theta modulation during exploration. Left: z-scored firing rates aligned to the 

descending zero-crossing of pyramidal theta. Right: distribution of mean theta phases.

(H) Gamma modulation of rad and l-m neurons (as in Figure 4B,E).

Shaded areas in panels E, F, and G denote 99% bootstrap confidence intervals across cells.
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Figure 7. Effect of event sample size on projection variability and classification performance.
(A) We evaluated how the number of SWR events used affects the embedding projection 

and layer classification. All available theta cycles were used while varying the number 

of randomly sampled SWR events. For representative channels from the pyramidal layer, 

hippocampal fissure (hf), and inner molecular layer (imol), projection histograms are shown 

for different SWR sample sizes. Smaller sample sizes yield broader distributions, indicating 

that a few hundred SWR events are necessary for convergence to the average projection 

coordinate.
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(B) Quantification of projection variability and classification accuracy across mice and 

layers. Classification accuracy is the proportion of projections correctly assigned to the 

ground-truth layer using a classifier (as in Figure 1H).

(C) Same as in (A) but using all available SWR events while varying the number of theta 

cycles. Shown are representative channels from the radiatum, mid molecular (mmol), and 

granular (gr) layers.

(D) Same as in (B) but for theta cycle subsampling.
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