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SUMMARY

Theta oscillations reflect rhythmic inputs that contin-
uously converge to the hippocampus during explor-
atoryandmemory-guidedbehavior. The theta-nested
operations that organize hippocampal spiking could
either occur regularly from one cycle to the next
or be tuned on a cycle-by-cycle basis. To resolve
this, we identified spectral components nested in
individual theta cycles recorded from the mouse
CA1 hippocampus. Our single-cycle profiling re-
vealed theta spectral components associated with
different firing modulations and distinguishable en-
sembles of principal cells. Moreover, novel co-firing
patterns of principal cells in theta cycles nesting
mid-gamma oscillationswere themost strongly reac-
tivated in subsequent offline sharp-wave/ripple
events. Finally, theta-nested spectral components
were differentially altered by behavioral stages of a
memory task; the 80-Hz mid-gamma component
was strengthened during learning, whereas the
22-Hz beta, 35-Hz slow gamma, and 54-Hz mid-
gamma components increased during retrieval. We
conclude that cycle-to-cycle variability of theta-
nested spectral components allows parsing of theta
oscillations into transient operatingmodes with com-
plementary mnemonic roles.

INTRODUCTION

Neuronal activity in the hippocampal circuit is organized on mul-

tiple timescales by a collection of network oscillators (Buzsáki,

2010). These oscillations are typically described as rhythmic

fluctuations in the local field potentials (LFPs) and correlate

with behavior (Buzsáki, 2002; O’Keefe and Nadel, 1978). During

active exploration, theta (5–12 Hz) oscillations dominate the

hippocampal CA1 area of the rodent brain (Vanderwolf, 1969)

and orchestrate neuronal firing (Csicsvari et al., 1999; Klaus-

berger et al., 2003; O’Keefe and Recce, 1993). Theta cycles

have been suggested to support the packaging of principal cell
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spiking into functional ensembles via the provision of discrete

windows in which incoming streams of information are pro-

cessed (Gupta et al., 2012; Hasselmo et al., 2002; Luczak

et al., 2015; Buzsáki and Moser, 2013; Mizuseki et al., 2009;

Rennó-Costa and Tort, 2017). However, it remains unclear

whether these computations are consistent across theta cycles

or whether they are dynamically tuned on a cycle-by-cycle basis.

A prominent feature of the hippocampal theta rhythm is its co-

occurrence with bouts of faster oscillations that span the gamma

(30–140 Hz) frequency band (Bragin et al., 1995; Colgin, 2015a;

Csicsvari et al., 2003; Lasztóczi and Klausberger, 2014; Schom-

burg et al., 2014). In the hippocampal CA1 area, this broad fre-

quency range has been subdivided into slow (�30–50 Hz) and

mid (�50–100 Hz) gamma oscillations, which present maximum

amplitude at distinct theta phases (Belluscio et al., 2012; Colgin

et al., 2009; Middleton and McHugh, 2016; Scheffer-Teixeira

et al., 2012; Yamamoto et al., 2014) and emerge from separate

locations along the somato-dendritic axis of CA1 principal cells

(Lasztóczi and Klausberger, 2016; Schomburg et al., 2014),

whereas fast (�100–140 Hz) gamma components originate

from the pyramidal layer (Lasztóczi and Klausberger, 2016;

Schomburg et al., 2014). These gamma band oscillations reflect

the synchronous activity of distinct neuronal circuits (Bragin

et al., 1995; Colgin et al., 2009; Csicsvari et al., 2003; Fernán-

dez-Ruiz et al., 2017; Lasztóczi and Klausberger, 2014) and

could correspond to different network states (Carr and Frank,

2012; Colgin, 2015b). Thus, we hypothesized that the cycle-

by-cycle variability of theta-nested oscillations reports flexible

switching of the hippocampal network between different oper-

ating modes, such as memory encoding and retrieval.

To investigate the variability of CA1 theta oscillations on a cy-

cle-by-cycle basis, we designed an unsupervised framework to

extract the spectral content of individual theta cycles. Our anal-

ysis retrieved two spectral components consistent with slow and

fast gamma oscillations, two components with main frequencies

within the mid-gamma range, and one within the beta (21–23 Hz

peak frequency) range. These theta-nested spectral compo-

nents (tSCs) differed in their theta phase amplitude modulation

and correlated with distinguishable principal cell ensembles at

the single-cycle level. We consistently observed these tSCs

across mice and recording paradigms and also in rat CA1 pyra-

midal cell layer LFPs. Furthermore, principal cell co-firing pat-

terns within theta cycles dominated by mid-gamma oscillations
. Published by Elsevier Inc.
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underwent enhanced reactivation during subsequent sleep/rest

sharp-wave/ripple (SWR; 135–250 Hz) events. Finally, we found

that theta-nested 80-Hz mid-gamma oscillations were selec-

tively strengthened during the learning stage of a goal-directed

spatial task, whereas the slower (22 Hz, 35 Hz, and 54 Hz) fre-

quency theta-nested components were stronger during the

memory retrieval stage. Altogether, these findings characterize

hippocampal CA1 as a versatile circuit that engages in different

operating modes reflected in theta-nested spectral components

during exploratory and memory-guided behavior.

RESULTS

We first used multichannel extracellular tetrode recordings to

monitor both principal cell spiking and LFPs from the CA1 pyra-

midal layer of the dorsal hippocampus in mice exploring

open fields.

Profiling Individual Theta Cycles by Their Spectral
Content
We aimed to characterize the spectral signature of individual

theta cycles observed in LFPs of the CA1 pyramidal cell layer.

To do so, we developed an unsupervised framework that iden-

tifies transient oscillations nested within theta cycles (Figure 1).

First, we applied ensemble empirical mode decomposition

(EEMD) to break down raw LFPs into their theta and supra-theta

signals (Figures 1A and S1). Unlike linear filters, the EEMD is

suited to non-stationary signals and allows instantaneous fre-

quencies to follow asymmetrical waveforms (Wu and Huang,

2009), as seen in theta oscillations (Figure 1A). Next, we

computed the spectrogram (from 10 to 200 Hz) for the supra-

theta signal and calculated its local mean within the boundaries

of each theta cycle. As a result, each theta cycle was associated

with a curve carrying the amplitude of different frequencies

within that cycle (Figure 1A). We refer to these power spec-

trum-like curves as spectral signatures.

We observed a large cycle-by-cycle variation in these spectral

signatures (Figure 1A), which was hidden when only considering

the averaged spectral signature from all theta cycles pooled

together (Figure 1B). We then applied independent component

analysis to these spectral signatures to extract, in an unsuper-

vised manner, frequency components representing distinct sig-

nals that consistently occur across theta cycles. We found that

each resulting tSC attributed large weights to different frequency

bands (Figure 1C), some of which were consistent with CA1 os-

cillations described previously (Belluscio et al., 2012; Colgin

et al., 2009; Lasztóczi and Klausberger, 2016; Middleton and

McHugh, 2016; Scheffer-Teixeira et al., 2012; Schomburg

et al., 2014; Sirota et al., 2008). Notably, tSC2 presented larger

weights around 35 Hz, matching the central frequency of slow

gamma oscillations. The next two components, tSC3 and

tSC4, exhibited peaks within the mid-gamma band, around

54 Hz and 80 Hz, respectively. tSC5 was dominated by fre-

quencies above 100 Hz, consistent with fast gamma activity.

Finally, tSC1 attributed larger weights to frequencies around

22 Hz. All of these tSCs were robustly detected across recording

experiments and animals (n = 20 recording days from 10 mice;

Figures S2A, S2B, and S3A). Interestingly, the strength of tSCs
presented a sharply decaying autocorrelation from one theta cy-

cle to the next (Figure S2C). Moreover, we retrieved similar tSCs

by performing the same analysis on LFPs recorded from the rat

CA1 pyramidal layer (Figure S2D).

We next assessed whether the amplitude of the oscillations

extracted by tSCs was modulated by the ongoing theta phase.

For each theta phase, we computed the mean amplitude of a

wide range (10–200Hz) of frequencies from the raw LFP by either

using all cycles or only those strongly expressing a given tSC

(Figures 1D, S2E, and S3B). Cycles with strong tSC2 exhibited

prominent slow gamma oscillations with increased amplitude

along the descending phase of theta, close to its trough;

whereas the tSC3 and tSC4 cycles showed increases in mid-

gamma amplitudes just after the theta peak. tSC5 cycles did

not show prominent components in frequencies below 100 Hz

but in the fast gamma range, with increased amplitude at the

theta trough (Figure S3B). Finally, tSC1 cycles showed a strong,

�22-Hz component with maximum amplitude at theta peaks.

Although no such hippocampal beta band component was pre-

viously reported to be coupled to theta oscillations, visual in-

spection of the raw signal confirmed that tSC1 cycles were

marked by a substantial deflection around the theta peak, indi-

cating that this signal was not a theta harmonic artifact (Figures

1E and S4A). On average, 36.3% of theta cycles contained at

least one strong tSC.

The magnitude of hippocampal gamma oscillations correlates

with speed in rodents. Accordingly, we found that the strength

of every tSC was positively correlated with mouse speed

(Figure S2F), consistent with previous work on CA1 gamma

oscillations in mice (Chen et al., 2011), with tSC3 being the least

speed-modulated and tSC4 the most (all p < 0.0002, bootstrap

test). Interestingly, the strength of both rat tSC1 and tSC2 was

negatively correlated with speed (Figure S2G), in line with previ-

ous work on rat slow gamma oscillations (Ahmed and Mehta,

2012; Kemere et al., 2013).

Altogether, these results reveal that theta cycles can be pro-

filed by their transient spectral content and that single-cycle

spectral signatures greatly differ from the grand average. Our

spectral decomposition also showed that tSC strengths of

individual theta cycles lie on a multidimensional continuum

rather than clustering into non-overlapping subsets (Fig-

ure S4B). This suggests that theta-nested oscillations are

weighted in each cycle rather than being expressed in a binary

fashion.

Theta-Nested Spectral Components Are Associated
with Different Firing Modulation of Principal Cells
In line with the previous analysis (Figure 1), we found that the

relationship between the strength of each tSC and theta phase

was robust across the whole mouse dataset (Figures 2A and

S3C). We next investigated whether tSCs were associated with

different firing modulation of principal cells (n = 1,003) during

the course of theta cycles.

We first evaluated whether neuronal firing was altered within

theta cycles strongly expressing a given tSC (Figures S4B, S4C,

and S5A). As a general rule, the principal cell firing rate was min-

imal at theta peaks and higher around theta troughs (Figures 2B

andS3D).However,we found thatprincipal cell firingaround theta
Neuron 100, 940–952, November 21, 2018 941



Figure 1. Single-Cycle Profiling of CA1

Theta Oscillations

(A) Top: a raw LFP example trace (black) recorded

from the CA1 pyramidal layer along with its theta

(red) and supra-theta (brown) signals extracted by

EEMD (see also Figure S1). Bottom: wavelet

spectrogram of the supra-theta signal shown

above. White dashed lines mark theta troughs.

White solid traces represent single-cycle spectral

signatures.

(B) Average spectral signature computed using all

theta cycles pooled together. The shaded area

represents SD.

(C) Example of theta-nested spectral components

(tSCs) extracted from the spectral signatures of

individual theta cycles from a recording day. Peak

frequencies of tSCs for that recording day are

shown in brackets. Peak frequencies across all

mouse recording days (median and interquartile

range) are as follows: tSC1, 22 Hz, 21–23 Hz;

tSC2, 35 Hz, 34–36 Hz; tSC3, 54 Hz, 52–55 Hz;

tSC4, 80 Hz, 77–82 Hz; tSC5, 169 Hz, 153–174 Hz.

See Figures S2A, S2B, S2I, S2J, and S8B for the

other mouse recording days and Figure S2D for

the rat dataset. Note that, to subsequently quan-

tify the strength of a given tSC nested in an indi-

vidual theta cycle, we projected the spectral

signature of that cycle onto the axis defined by

that tSC’s weight vector (see STAR Methods for

details). This projection represents a measure of

similarity between a single-cycle spectral content

and a given tSC.

(D) Mean amplitude of supra-theta frequencies

computed from the raw LFPs as a function of theta

phase for the example recording day shown in (C).

Each panel displays this analysis computed either

for all theta cycles together (see also Figure 2E) or

selectively for theta cycles strongly expressing a

particular tSC (i.e., above the tSC threshold; see

also Figure S4). Cosine indicates theta phase

reference with two cycles for clarity. See also

Figure S3B for frequencies above 110 Hz and

Figure S5A for the amplitude of supra-theta fre-

quencies as a function of theta phase in cycles

with weaker tSC strength.

(E) Raw LFP spectrogram (top) along with the raw

LFP and theta signal of single-cycle examples

drawn from the tSC cycles displayed in (D). See

also Figure S4A.
troughs was significantly higher in tSC2 cycles compared with

any other tSC (all pairwise comparisons p < 0.0072, Wilcoxon

signed-rank tests). In contrast, principal cell firing around theta

peaks was the highest in tSC4 cycles (all pairwise comparisons

p < 0.0004, Wilcoxon signed-rank tests). These differences in

instantaneous firing rate were confirmed by evaluating, for each

theta phase, the spike probability observed in cycles strongly ex-

pressing each tSC relative to what was observed for all cycles

(Figure 2C). Indeed, principal cell spike probability exhibited a
942 Neuron 100, 940–952, November 21, 2018
sharp increase at the peak of tSC4 cycles

compared with the grand average cycle

(from �49� to 49� theta phase; multiple
regression ANOVAmodel, controlling for animal identity) but pre-

sented a sustained increase from the descending phase to the

trough for tSC2 cycles (from 0� to 103� theta phase). Principal

cell spike probability fluctuated far less in tSC3 cycles. The

change in spike probability was biphasic around the peak of

tSC1 cycles (significantly decreased from �48� to �6� and

increased from 18� to 55�). Importantly, the magnitude of such

spiking modulation (Figure 2C) drastically diminished in theta

cycles nesting weaker tSCs (Figures S5B and S5C).



Figure 2. Single-Cycle Principal Cell Firing

Differs According to Expression of Theta-

Nested Spectral Components

(A) Strength of tSCs as a function of theta phase.

Each color-coded curve represents the strength

computed at each time point as the inner product

between the corresponding tSC and the supra-

theta signal spectrogram. Theta-nested SC1

strength peak theta phase: median 35�; inter-

quartile range, 30�–41�; tSC2, 121�, 46�–131�;
tSC3, 42�, 35�–50�; tSC4, 34�, 27�–41�; n = 20

recording days from 10 mice. Shaded areas indi-

cate SEM. Cosine indicates theta phase reference

with two cycles for clarity.

(B) Average instantaneous firing rate (Z-scored) of

principal cells in theta cycles. Results were

computed either using all theta cycles or only

those strongly expressing a given tSC. Results

shown as means over all principal cells, with

shaded areas indicating 95% confidence interval.

The averaged raw LFP waveform is displayed on

top as a reference.

(C) Change in spike probability of principal cells as

a function of ongoing theta phase. Changes were

computed for cycles strongly expressing a given

tSC and relative to the grand average (mean ±

SEM). Relative spike probabilities were calculated

individually for each neuron before averaging.

Cosine indicates theta phase reference with two

cycles for clarity. See Figures S5B and S5C for

spike probability in theta cycles with weaker tSC

strength. See Figure S5F for comparison with results obtained with the application of linear filters using frequency bands matching tSC main frequencies.

(D) Example population principal cell firing triggered by the troughs of tSC signals. Top: average raw LFPs and tSC signals triggered by the troughs of the latter.

Troughs of each tSC signal were detected within its corresponding theta cycles. A single tSC signal trough (with themost negative value) per theta cycle was used

to avoid auto-correlation distortions. Center: raster plots showing the spike trains of all principal cells recorded that day. Note, in each row, the spike times (ticks)

around the trough of the tSC signal detectedwithin a theta cycle. Bottom:mean instantaneous firing rate around the troughs of the tSC signal detected in the theta

cycles strongly expressing that tSC.

(E) Distribution of the preferred firing phase of principal cell spikes to tSC signals. Cosines (dashed) indicates tSC signal phase reference using two cycles for

clarity. Only cells with significant coupling are included. Note that the spike phase coherence to the tSC signal was greatly diminished in theta cycles nesting

weaker tSC (i.e., subthreshold strength; see Figures S4B, S5D, and S5E).
We then evaluated whether principal cell firing in each theta

cycle was further modulated at a finer temporal scale matching

the corresponding tSC main frequencies. We indeed observed

that principal cell spikes were also phase-coupled to tSC signals

(Figures 2D and S3E–S3I). As a general rule, spike discharge was

organized around the troughs of each tSC signal (Figures 2E and

S3E). This spike-phase coherence to tSC signals substantially

decreased in theta cycles nesting weak tSCs (Figures S5D

and S5E).

Overall, these results demonstrate that theta cycle-by-cycle

spectral variability has clear population-level spiking correlates.

Theta Spectral Components Correlate with
Distinguishable Neuronal Ensembles
Next we investigated whether each tSC was associated with

particular ensembles of principal cells. For each exploration ses-

sion, we trained generalized linear models (GLMs) to predict the

strength of a given tSC on a cycle-by-cycle basis from the spike

counts of principal cells (Figure 3A; mean principal cells per

GLM, 39.25; interquartile range, 25–55). To avoid overfitting,

GLMs were trained in 90% of all recorded theta cycles and

tested in the remaining 10%. This was performed iteratively so
that all theta cycles were tested by the end of the procedure

(10-fold cross-validation). Each GLM consisted of a set of

regression weights measuring the contribution of each principal

cell when predicting the strength of a given tSC (Figure 3B, left).

To assess the statistical significance of each tSC GLM, we

repeated this procedure after shifting the original spikes across

theta cycles. This control preserved the distributions of spike

counts per cycle as well as the auto-correlation of each cell

and the cross-correlations between thembut destroyed the orig-

inal relations between ensemble activity and tSC strength. We

observed that the tSC strength predictions obtained by each

original GLM were significantly better than those obtained from

the GLM shift controls (Figure 3B, right), indicating that each

tSC was associated with the activity of a particular principal

cell ensemble. We also noted that the weights attributed to indi-

vidual neurons by tSC GLMs were positively correlated to their

speed modulation; that is, principal cells with an increased firing

rate at higher speeds were, in general, more positively correlated

with tSC strength (Figure S6A). Of note, the relationship between

speed modulation of individual neurons and their GLM weights

was the highest in tSC4 models and the weakest in tSC3 models

(Figure S6A). We did not find any significant differences across
Neuron 100, 940–952, November 21, 2018 943



Figure 3. Theta-Nested Spectral Compo-

nents Are Associated with Different Prin-

cipal Cell Ensembles

(A) The relationship between principal cell en-

sembles and the strength of tSC signals was as-

sessed using generalized linear models. Each

GLM was fitted to predict the strength of a given

tSC in individual theta cycles from principal cell

spike counts. Note that, in these analyses, GLMs

are non-categorical, and the strength of each tSC

signal was directly assessed on a cycle-by-cycle

basis using all theta cycles. The 10-fold cross-

validation procedure consisted of splitting the

whole set of detected theta cycles as training

(90%) and testing cycles (10%), standardizing

(Z score) tSC strengths from all cycles by their

mean and SD in the training set, fitting the GLM

model to the training set, and evaluating themodel

on the test data. These steps were repeated iter-

atively until all cycles were used in the training and

testing sets (see STAR Methods).

(B) Left: example weight vectors containing the

contribution of each principal cell (mean b co-

efficients across 10 cross-validated GLMs) fitted

to predict the strength of a given tSC. Right: the

prediction achieved by the original model is con-

trasted with the distribution of shift control pre-

dictions. Prediction was quantified as the Pearson

correlation between observed and predicted tSC

strengths.

(C) Left: prediction of the strength of a given tSC

by the original model (vertical axis) compared with

that by the other tSC models (horizontal axis);

predictions are expressed as the number of SDs

away from themean of their corresponding control

distributions to compare tSC models across

recording days with different numbers of cycles

and neurons. Each original tSC model is repre-

sented by three dots (color-coded according to

the other tSC models; dots of non-significant

original models are displayed in gray). Right: pre-

dictions (mean ± 95% confidence interval) obtained from the GLMs fitted for the different tSCs. Note that GLM predictions were normalized by their original value

(i.e., GLMs predicting same tSC for which they were fitted) for visualization purposes only, to make performance loss across tSC models explicit. See also

Figure S6C for speed control.
tSCs between single-neuron GLMweights and other firing prop-

erties, such as spatial information (Figure S6B).

Previous studies (Ahmed and Mehta, 2012; Chen et al., 2011;

Kemere et al., 2013; Zheng et al., 2015) and our own data (Fig-

ure S2F) showed that speed is an important covariate of hippo-

campal gamma oscillations. Because the CA1 principal cell firing

rate is also correlated with speed (McNaughton et al., 1983), we

tested whether the information conveyed by principal cells and

extracted by the GLMs was a by-product of the co-modulation

of tSC strength and spike discharge by speed. First, we found

that the GLMs fitted to predict tSC strength from the original

spikes and speed significantly increased the prediction over

the GLMs fitted with original speed but spike content of other

theta cycles (Figure S6C). Further, we found that the tSC predic-

tion was still significant when the GLMs were re-computed using

only theta cycles within a narrow range of speed values (tSC1,

p < 7.6 3 10�6; tSC2, p < 7.1 3 10�6; tSC3, p < 0.0013; tSC4,

p < 3.1 3 10�6; Wilcoxon test, comparing actual prediction
944 Neuron 100, 940–952, November 21, 2018
values against expected from shuffled data; using cycles within

2 cm/s speed ranges: 1–3, 3–5, 5–7, 7–9, and 9–11 cm/s). These

two complementary control analyses show that the information

conveyed by principal cell firing about the strength of each tSC

was mostly not redundant to speed information.

We further evaluated the selectivity of the relationship be-

tween the ensembles of principal cell spikes and their corre-

sponding tSC by using the original GLMs obtained for a given

tSC to predict the strength of the other tSCs. We found that

the predictions for a tSC declined when using the regressions

fitted with the other tSCs (Figure 3C). These results show that

the spike content of individual theta cycles can predict tSC

strength.

Co-firing Patterns in Theta Cycles Nesting Mid-gamma
Oscillations Undergo Enhanced Offline Reactivation
We evaluated the relation between tSCs and the CA1 neuronal

dynamics of non-exploratory behavior. Previous work showed



Figure 4. Enhanced SWR Reactivation of tSC3 and tSC4 Co-firing Patterns

(A) SWR reactivation of waking patterns formed by principal cell theta co-firing. SWR reactivation was estimated by comparing the tendency of principal cell pairs

to co-fire in theta cycles of a given tSC during exploration (theta co-firing) with the tendency to co-fire in SWRs during the following rest (post-SWR co-firing),

controlling for their baseline co-firing in the rest before (pre-SWR co-firing). Co-firing was quantified as Pearson correlation (r).

(B) SWR reactivation following exploration of familiar and novel environments. The SWR reactivation was measured by the coefficients of the linear

regressions that predict post-SWR co-firing from theta co-firing, controlling for pre-SWR co-firing. The two histograms show the probability distributions of

SWR reactivation obtained using randomly selected theta cycles from the familiar and novel environments. Color-coded arrows show the SWR

reactivation obtained for theta cycles of a given tSC. Interquartile range of SWR events in post-sleep sessions: familiar interquartile range (IQR),

704–1,632; novel IQR, 701–1,758. See also Figures S7B and S7C for SWR reactivation computed from speed- and location-matched theta cycles. The

dataset includes n = 18 familiar enclosure sessions and 12 novel enclosure sessions, with mice exposed both to a familiar and a novel enclosure on most

of the recording days.

(C) Change in SWR co-firing (from pre- to post-exploration; mean ± SEM) as a function of theta co-firing in familiar and novel environments. For each tSC, the data

points correspond to cell pairs whose theta co-firing exceeded the corresponding value on the horizontal axis.
that the firing associations formed between co-active cells dur-

ing exploration are later replayed during sleep/rest SWRs, pre-

sumably in support of memory consolidation (Girardeau et al.,

2017; Kudrimoti et al., 1999; Peyrache et al., 2009; Rothschild

et al., 2017; Wilson and McNaughton, 1994). We tested whether

theta cycles were differentially associated with offline reactiva-

tion depending on their spectral signatures. To evaluate SWR

reactivation, we recorded rest epochs before and after the

exploration of familiar and novel environments (Figure 4A). We

then compared the tendency of principal cell pairs (n = 31,722)

to co-fire in cycles of a given tSC (theta co-firing) with their ten-

dency to co-fire in SWRs of the following rest period (SWR co-

firing). For all tSCs, the waking firing patterns of both familiar

and novel environments were reactivated in the following rest,

as shown by the significant and positive correlations between

each tSC co-firing pattern and the subsequent SWR co-firing

(Figure 4B; all p < 0.0001; linear regressions, controlling for pre

SWR co-firing). Further, tSC co-firing patterns from novel envi-

ronment exploration were more strongly reactivated than co-

firing patterns from the familiar environment (Figure 4B; familiar

versus novel random cycle distributions, p = 0.0046; bootstrap

test). Importantly, tSC3 and tSC4 co-firing patterns of novel en-

vironments predicted SWR co-firing substantially better than co-

firing patterns from randomly selected theta cycles (Figure 4B;

tSC3 and tSC4 p < 0.0004; theta cycle permutation test). This

was not the case for tSC1 and tSC2 cycles (both p > 0.48).

The SWR reactivation strength of tSCs from familiar environ-
ments was similar to randomly selected theta cycles. Because

tSCs exhibited different levels of speed modulation (Figure S2F),

and because the speed modulation of gamma oscillations is

stronger during novelty (Kemere et al., 2013), we tested whether

the speed distribution of theta cycles could explain the observed

differences in reactivation. We confirmed that the reactivation

levels associated with tSC3 and tSC4 from novel environments

were significantly higher compared with randomly selected cy-

cles with the same speed and location distributions (Figure S7).

The firing associations reactivated during SWRs reflect pre-

cedingwaking experience. That is, the greatest co-firing increase

in SWR events occurs between cells that had fired together the

most in recent theta epochs (O’Neill et al., 2008).We investigated

to what extent co-activation of principal cells in theta cycles

expressing particular tSCs could explain increases in SWR

co-firing. More specifically, we fitted a linear regression model

to predict the change in SWR co-firing (pre- to post-exploration

rest) from the theta co-firing calculated from the cycles of each

tSC. For the familiar environment, we found that the change in

SWR co-firing only weakly related to the amount of waking

co-firing in all tSCs (Figure 4C). In contrast, for the novel environ-

ment, cell pairs drastically increased their SWR co-firing as a

function of both tSC3 and tSC4 co-firing (tSC3 and tSC4 b coef-

ficients, 0.045 ± 0.007 and 0.035 ± 0.007, both p < 5.5 3 10�8),

whereas both tSC1 and tSC2 co-firing only marginally predicted

subsequent SWR firing associations (tSC1 b = 0.010 ± 0.006,

p = 0.099; tSC2 b = 0.014 ± 0.006, p = 0.015).
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Figure 5. Laminar Profile of tSC-Related Currents

(A) CA1 pyramidal cell reconstruction used as reference (courtesy of P. Somogyi and T. Klausberger; adapted from Lapray et al., 2012).

(B) Mean amplitude of frequencies computed from the raw CSD signals as a function of theta phase using all theta cycles (theta phase defined from pyramidal

layer LFP).

(C) Same as in (B) but for theta cycles strongly nesting a given tSC, as detected from the pyramidal layer LFP. Raw LFPs recorded from different depths were

averaged around tSC signal troughs and displayed next to a panel of the corresponding layer (black traces, with a thicker trace showing the electrode used for the

amplitude-theta phase plot).

See also Figures S2I and S2J for tSCs extracted from silicon probe recordings of mouse hippocampal CA1 LFPs.
These complementary analyses show that co-firing patterns

observed in tSC3 and tSC4 cycles (i.e., the ones dominated

by 54-Hz and 80-Hz mid-gamma oscillations) are the most reac-

tivated in the subsequent sleep/rest SWRs. This enhanced re-

activation was seen for the exploration of novel but not familiar

environments and could not be explained by speed and location

distributions.

Current Source Density Analysis Reveals Laminar
Profiles of tSC Signals
To gain further insights regarding the possible contribution of

each tSC to hippocampal processing of mnemonic information,

we evaluated tSC laminar profiles in terms of current source

densities. We extracted tSCs from LFPs recorded from the

mouse hippocampal CA1 using a silicon probe spanning the

somato-dendritic axis of principal cells (Figures S2H–S2J).

This allowed estimating current source density (CSD) signals

from different CA1 layers. We then calculated the theta phase

relationship of the frequency components of these CSD signals

relative to CA1 pyramidal layer theta oscillations (Figure 5)

by considering either all recorded cycles (Lasztóczi and Klaus-

berger, 2014; Figure 5B) or only those with strong tSCs (Fig-

ure 5C). We found that tSC1- and tSC2-related oscillations

presented stronger radiatum layer currents compared with

tSC3 and tSC4, which presented prominent currents in the lacu-

nosum moleculare layer (Figure 5C). These observations are

consistent with previous work indicating that mid-gamma CA1

oscillations are mainly generated in the lacunosum moleculare

layer, whereas slow gamma oscillations relate more to the radi-

atum layer (Bragin et al., 1995; Lasztóczi and Klausberger, 2014;

Schomburg et al., 2014).
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The Strength of tSCs Differently Relate to Stages of a
Spatial Memory Task
We finally askedwhether tSCswere differentially modulated dur-

ing the behavioral stages of a memory task. We used hippocam-

pal CA1 LFP recordings from additional mice trained to adjust,

every day, their spatial knowledge of a crossword-like maze to

reach a reward location (Figures 6A and S8A; n = 13 recording

days from 6 mice) (McNamara et al., 2014; Tolman and Honzik,

1930). Each day started by allowing mice to explore the maze

in its plain configuration (i.e., without intra-maze barriers or re-

wards; Figure 6A, baseline). This session was used to extract

tSCs (Figure S8B) and functioned as a baseline to assess

changes in tSC strength during the subsequent learning and

memory retrieval stages. We next inserted a new set of intra-

maze barriers and selected two departure boxes and a food

reward location. Mice were then trained to learn (up to 20 trials)

the most efficient path to get to the reward from the departure

boxes in use that day (Figure 6A, learning; Figure S8A). Mice

were further tested 1 hr after the end of learning during amemory

probe test (Figure 6A, probe; Figure S8A).

We found that tSCs were differently affected across task

stages. The strength of tSC4 strongly increased during learning

relative to baseline (Figures 6B–6D; p < 1 3 10�36, ANOVA

model controlling for animal speed and inter-recording day var-

iations; Figures S8C and S8D). This tSC4 strengthening was

accompanied by a strong decrease in tSC1 strength (Figures

6B–6D, p < 1 3 10�36). In contrast, tSC4 strength decreased

during the memory probe test relative to baseline (Figures

6B–6D; p < 1.4 3 10�12). All remaining tSCs were strengthened

during the probe test (tSC1, p = 0.0002; tSC2, p < 4.7 3 10�8;

tSC3, p < 3 3 10�36), with tSC3 presenting the highest



Figure 6. Differential Modulation of tSCs during Learning and Probe

Stages of a Spatial Memory Task

(A) Outline of the crossword maze task, illustrated by an example recording day.

Shownare theanimal’spath foreach taskstage, the reward location inuseduring

learning (theblackdot represents thebaitedplasticcap) and the fourunrewarded

ends of track (plain circles represent non-baited plastic caps) that day; on each

task stage of that day, unused departure boxes are shaded. See also Figure S8.

(B) Strength of tSCs as a function of task stage and animal speed (mean ± SEM

across recording days). For each day, the strength of each tSC was averaged

across all theta cycles occurring within the indicated speed range (horizontal

axis). Strength values were Z-scored with respect to baseline (i.e., SD and

mean for normalization were taken from baseline theta cycles). Data were

averaged across all theta cycles within each recording day, and then grand

averages were calculated from those.

(C) tSC modulation during learning and probe stages. Each dot represents the

tSC modulation during learning (vertical axis) and memory probe (horizontal

axis) for a given recording day and relative to the baseline. The diagonal solid

black trace shows the y = x line (i.e., along which the strength of a tSC in

learning and probe test would be equal). Each bar plot represents the average

projection of the data of each tSC on a given axis.

(D) tSC modulation by task stages. tSC strength modulation was quantified

relative to baseline using the coefficients from an ANOVAmodel controlling for

speed and inter-recording day variability. Error bars represent 95% confi-

dence interval. See also Figure S8.
increase (Figure 6D; p < 1 3 10�10, all pairwise comparisons).

These changes in tSC strength were consistently observed

across days (Figure 6C). Because the proportion of theta cy-
cles happening at different speeds and locations can differ

across task stages (Figure S8E), we also ran a matching con-

trol to compare tSC strength across different stages, restricting

the analysis to speed- and location-matched theta cycles (Fig-

ure S8F). We found that the observed task stage-related

changes in tSC strength held even when controlling for speed

and spatial location (Figure S8G).

When considering the learning stage, we found a strength-

ening of tSC4 (and tSC2) from early to late trials and the opposite

trend for tSC1 (Figure S8H). Further, learning-related tSC4

enhancement was more pronounced near the goal location

compared with the departure zones or near the intra-maze bar-

riers, whereas, during the memory test, the goal and the depar-

ture zones were associated with a drastic increase in tSC1 and

tSC2, respectively (Figure S8I). No such differences between

the departure, the barriers, and the goal zones were seen during

the baseline session, when such zones were not yet meaningful

to the task (Figure S8I).

These results show that the behavioral stages of a spatial

memory task affect tSCs differently. More specifically, the

theta-nested 80-Hz mid-gamma component is strengthened

during learning, whereas the beta, slow gamma, and 54-Hz

mid-gamma components are enhanced during memory testing.

DISCUSSION

In this study, by introducing an unsupervised framework for sin-

gle-cycle analysis of theta oscillations, we show that spectral

components transiently nested in individual cycles relate to

distinct spiking dynamics and distinguishable ensembles of prin-

cipal cells. Further, co-firing patterns expressed in theta cycles

with strong lacunosum moleculare layer-related oscillations are

more reactivated in sleep/rest SWRs following exploration of

novel environments. Finally, we found that theta-nested spectral

components are differently altered by behavioral stages of a

spatial memory task. Taken together, our results support the

idea that theta cycle-to-cycle spectral variability reflects distinct

hippocampal CA1 network operations with different contribu-

tions to memory processes.

Single-Cycle Spectral Decomposition of Theta
Oscillations Reveals Transient Tuning of CA1 Spiking
During exploratory behavior, the spiking activity of hippocam-

pal CA1 neurons and their inputs are coupled to the phase of

the ongoing theta rhythm. Medial entorhinal cortex layer III

(EC3) principal cells project to the CA1 lacunosum moleculare

layer and exhibit their highest discharge probability around

the peak of the theta cycle; hippocampal CA3 pyramidal cells

project to the CA1 radiatum layer and exhibit their highest

spiking activity along the descending phase of CA1 pyramidal

layer theta (Desmond et al., 1994; Ishizuka et al., 1990; Mizu-

seki et al., 2009; Somogyi and Klausberger, 2005; Witter

et al., 2000). These inputs are integrated in the CA1 dendritic

arbor and are modulated by diverse interneuron types, which

also fire at particular phases of the theta cycle (Klausberger

and Somogyi, 2008). Local computations then shape the

expression of cell assemblies around the trough of the theta cy-

cle (Mizuseki et al., 2009; Somogyi et al., 2013). The renewal of
Neuron 100, 940–952, November 21, 2018 947



this set of events in each theta cycle lays the foundation of our

current understanding of CA1 theta dynamics. However, it re-

mained unclear whether theta-nested operations occur regu-

larly from one cycle to the next or whether they are dynamically

tuned on a cycle-by-cycle basis.

Here we profiled theta cycles by using their nested signals to

evaluate cycle-by-cycle variations in the hippocampal circuit.

We developed a single-cycle analysis framework to extract tran-

sient spectral components embedded in theta oscillations re-

corded from the CA1 pyramidal cell layer. We found that theta

cycles holding strong tSC signals related to particular temporal

fluctuations of principal cell firing. Further, CA1 principal cells

reliably locked their discharge to the troughs of tSC signals,

which were themselves locked to different theta phases. More-

over, we found that the different tSCs are associated with distin-

guishable neuronal ensembles. Taken together, these findings

suggest that the cycle-to-cycle variability of tSCs reflects the

functional partitioning of theta activity in distinct network

operations.

Spectral Signatures of Theta Cycles as Readouts of
Distinct CA1 Operations
The synaptic currents flowing into the CA1 circuit are reflected

in LFPs (Buzsáki et al., 2012). The single-cycle spectral signa-

tures we identified here exhibit frequency signals consistent

with oscillations reported previously and thought to reflect

CA3 and EC3 inputs to CA1; namely, slow and mid-gamma os-

cillations, respectively (Bragin et al., 1995; Colgin et al., 2009;

Fernández-Ruiz et al., 2017; Lasztóczi and Klausberger, 2016;

Scheffer-Teixeira and Tort, 2017; Schomburg et al., 2014). In

line with previous findings, we show that the mid-gamma-range

tSCs extracted from CA1 pyramidal layer LFPs related to

strong CSD signals in the CA1 lacunosum moleculare layer,

whereas the currents associated with the slow gamma (tSC2)

as well as the beta range (tSC1) were stronger in the CA1 radi-

atum layer. Projections of CA3 principal cells to CA1 are

thought to be involved in mnemonic information retrieval,

whereas ongoing information about the external world would

be directly transmitted to CA1 by EC3 inputs for encoding

(Hasselmo et al., 2002). Slow and mid-gamma oscillations

could thus be proxies for memory retrieval and encoding

(Carr and Frank, 2012), respectively. Such a suggestion is sup-

ported by recent work focusing on how gamma oscillations

correlate with spatial coding schemes in CA1 (Bieri et al.,

2014; Cabral et al., 2014; Dvorak et al., 2018; Zheng et al.,

2016a). For example, it has been reported that slow (CA3-

related) and mid (EC3-related) gamma oscillations bias CA1

spatial coding to a prospective mode (as reflected in animal

crossings in which place cells tend to present a maximum

instantaneous rate before their ‘‘mean’’ place field center) and

to a retrospective mode (i.e., in animal crossings with the place

cell maximum instantaneous rate delayed in relation to the

mean place field center), respectively (Bieri et al., 2014).

Further, CA1 place cells better represent current spatial posi-

tion in theta cycles dominated by mid-gamma oscillations

(Dvorak et al., 2018; Zheng et al., 2016a). Interestingly, place

cell activity in theta cycles with slow gamma oscillations domi-

nating over mid gamma oscillations better represent distant
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shock zones than the current location in an aversive spatial

memory task (Dvorak et al., 2018). Taken together, these ob-

servations reinforce the idea of slow- and mid-gamma oscilla-

tions being more strongly associated with the retrieval of past

experience and the representation of ongoing sensory informa-

tion (Colgin, 2015b; Fries, 2009), respectively. This idea is also

supported by recent reports of novelty-related strengthening of

CA1 mid-gamma power (Bieri et al., 2014; Zheng et al., 2016b).

Following this line of thoughts, cell ensembles expressed in

theta cycles nesting a signal related to ongoing external infor-

mation would be selectively channeled toward further process-

ing, possibly for the purpose of consolidation. Indeed, we found

that, during novel environment exploration, the principal cell

co-activations in theta cycles carrying strong mid-gamma oscil-

lations were more reactivated in SWR events of subsequent

rest periods. Thus, the presence of strong tSC3 and tSC4

seems to report a CA1 operating mode during which the

augmented influence of EC3 inputs, through lacunosum molec-

ulare currents, conveys highly processed sensory information

that drives the expression of neuronal representations associ-

ated with novel or salient behavioral experience, which would

undergo enhanced offline consolidation.

We further evaluated whether tSCs were modulated during

learning and probe stages of a memory task. We found that

the strength of the theta-nested 80-Hz mid-gamma component

(tSC4) substantially increased during learning, whereas it

decreased during memory testing; the 54-Hz mid-gamma

component (tSC3) instead exhibited the highest increase during

memory testing. Both the beta-range (tSC1) and the slow

gamma (tSC2) components also increased during the probe

stage. During spatial learning, the 80-Hz mid-gamma compo-

nent possibly dominates CA1 theta because new external infor-

mation is paramount during this stage. Later, in the probe test,

previously learned information would be retrieved from CA3

and integrated with the ongoing external information conveyed

by EC3. We suggest that this is why, besides the stronger

beta-range and slow gamma-range components related to radi-

atum inputs, the 54-Hz mid-gamma component related to lacu-

nosum moleculare inputs is also enhanced during the memory

probe test.

The strengthening of tSC4 observed during learning in the

crossword maze is consistent with the previously suggested

role of EC-related, �60- to 100-Hz gamma oscillations in mem-

ory acquisition; likewise, the probe-related increase in tSC2

is consistent with the hypothesis of a role of CA3-driven

gamma oscillations in memory retrieval (Colgin, 2015b). Inter-

estingly, we also found that the good behavioral perfor-

mance observed in late learning trials was associated with

stronger tSC4 and tSC2 compared with early trials. These

learning-related tSC4 and tSC2 enhancements were also

more pronounced near the goal location. During memory

testing, tSC1 and tSC2 drastically increased near the goal

and the departure zones, respectively. Importantly, such com-

plex location-related changes in tSC strengths in the crossword

maze were not observed during the baseline session, before

animals experienced the behavioral relevance of these zones.

These findings suggest that the strength of the theta-nested in-

puts received by CA1 principal cells is weighted according to



stages of mnemonic information processing and behavioral

relevance of spatial locations.

Dynamic Weighting of CA1 Operations during Theta
Oscillations
In this work, we found that theta cycles could be clearly domi-

nated by a given tSC, but we did not find any evidence that the

strength distributions of tSCs unveil clusters of theta cycles.

Instead, we found that the different gamma oscillations and

the beta signal occurred with varying levels of expression

across theta cycles, indicating that tSCs could be better under-

stood as lying along a continuous, multidimensional spectrum

instead of forming discrete subsets (Figure S4). Thus, cycles

dominated by a tSC would be those at the extreme of a contin-

uum rather than representing a well-defined cluster of theta cy-

cles. The study of theta cycles positioned at the extreme of

such distributions appears to be highly valuable for the under-

standing of CA1 network dynamics, whereas the observations

mentioned above also highlight the importance of developing

theories accounting for the continuous aspect of the data.

For instance, we observed that the theta cycles at the extreme

of the axes defined by tSCs held distinct spike temporal pat-

terns that represented distinct deviations from the canonical

pattern derived from the grand average analysis of theta cycles.

Importantly, the magnitude of such selective spike modulation

diminished as the strength of tSCs also decreased in theta cy-

cles. Moreover, we noticed that theta cycles could express

multiple tSCs, although rarely, and that the strength of each

tSC signal exhibited a sharply decaying autocorrelation across

theta cycles. Taking these into consideration, we propose that

the inputs converging to hippocampal CA1, in conjunction with

local computations, are dynamically weighted and combined

within each theta cycle. This opens the view that CA1 theta cy-

cles can hold a collection of operating modes ranging from the

defined network states of mainly reading (retrieving) to mainly

writing (encoding).

An attractive feature of a single-mode network state view,

however, is that CA1 could efficiently switch between encoding

and retrieval, thereby avoiding information interference (De

Almeida et al., 2012). Theoretical and experimental work also

indicate that theta oscillations comprise temporally separated

encoding and retrieval phases (Hasselmo et al., 2002; Siegle

andWilson, 2014). Thus, we propose that the dynamic weighting

view could still explain how CA1 avoids interference through the

segregation of encoding and retrieval, notably by means of

distinct theta phases within a single theta cycle. Under such a

scenario, EC3 and CA3 inputs would drive CA1 at different theta

phases and at different levels of magnitude on a cycle-by-cycle

basis and according to behavioral demands.

The Two Facets of the CA1 Mid-gamma Band
The unsupervised spectral decomposition we applied on CA1

LFPs during theta oscillations blindly retrieved two statistically

independent components within the mid-gamma range. In our

framework, the spectral components were automatically

extracted from their cycle-to-cycle variability, and the definition

of gamma bands was therefore not derived from the averaged

theta cycle. The two extracted mid-gamma tSCs both presented
maximum amplitude near the theta peak; their co-firing patterns

were similarly reactivated in offline SWRs, and their currents

were traced back to the lacunosum moleculare layer. However,

these 54-Hz- and 80-Hz components exhibited three important

differences. First, we observed that theta cycles nesting promi-

nent 80-Hz mid-gamma component presented increased spike

discharge of CA1 principal cells around theta peak, which nor-

mally corresponds to their lowest discharge probability but

tightly follows EC3 principal cell highest firing (Mizuseki et al.,

2009). In contrast, the temporal fluctuation of the CA1 principal

cell firing rate in theta cycles nesting the 54-Hz mid-gamma

component was much weaker. Second, the strength of tSC4

showed a strong speed dependency, whereas that of tSC3

was significantly lower. Finally, tSC4 was strengthened during

learning, whereas tSC3 strength increased during memory

testing.

One speculative explanation is that these two mid-gamma

components relate to the same network oscillator but driven

at different regimes, which likely depend on the task demand.

That is, the theta cycle-by-cycle variability of the mid-gamma

frequency would report adaptive changes of the EC3 inputs to

CA1 as the animal learns or remembers. Accordingly, the EC3-

to-CA1 circuitry would oscillate at a higher mid-gamma fre-

quency while the animal is actively engaging in learning and

the CA1 circuit is under a strong encoding load, pushing theta

spectral signatures to the 80-Hz range and increasing its ef-

fect on principal cell firing. During periods dominated by mem-

ory retrieval, the hippocampal network would then operate in a

different regime, during which radiatum currents conveying

previously learned information are integrated with external in-

formation coming to the lacunosum moleculare layer. In such a

case, the mid-gamma oscillations would oscillate at a lower

frequency because of a milder load on the EC3-to-CA1 cir-

cuitry compared with the learning stage. During memory

retrieval, the milder influence of tSC3-related currents on the

CA1 principal cell firing rate (compared with tSC4) could avoid

interference with radiatum layer-driven currents, allowing the

reliable reinstatement of firing patterns associated with CA3

inputs.

An alternative possibility is that tSC3 and tSC4 relate to two

different oscillators. Although the CSD analysis indicates that

both tSC3 and tSC4 reflect currents in the lacunosummoleculare

layer, these two mid-gamma tSCs could be the readouts of

different EC populations projecting to CA1. Our results show

that tSC4 is more speed-modulated than tSC3 and that tSC4

also correlates more positively with speed-modulated principal

cells. This raises the possibility that tSC4-related oscillations

reflect the activity of a subset of EC cells with strong speedmod-

ulation, which have been reported previously (Kropff et al., 2015;

Sun et al., 2015), whereas tSC3-related oscillations would reflect

EC cells with weak speed correlation.

Overall, these findings support the notion that individual theta

cycles represent versatile temporal units in which CA1 computa-

tions are tuned to transiently shape principal cell firing output

during spatial exploration and memory-guided behavior. These

findings also highlight the importance of single-cycle analysis

of theta oscillations in deciphering fine-grained CA1 circuit

dynamics.
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Buzsáki, G. (2010). Hippocampus: Network Physiology. In Handbook of Brain

Microcircuits, G.M. Shepherd and S. Grillner, eds. (Oxford University Press),

pp. 165–174.
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Oscillatory coupling of hippocampal pyramidal cells and interneurons in the

behaving Rat. J. Neurosci. 19, 274–287.

Csicsvari, J., Jamieson, B., Wise, K.D., and Buzsáki, G. (2003). Mechanisms of
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

CamKIIa-Cre B6.Cg-Tg(Camk2a-cre)T29-1Stl/J mice https://www.jax.org stock number 005359; RRID: IMSR_

JAX:005359

Dat-Cre B6.SJL-Slc6a3tm1.1(cre)Bkmn/J mice https://www.jax.org stock number 006660; RRID: IMSR_

JAX:006660

Long Evans rats Harlan, UK Strain code 140

C57BL/6J mice Charles River, UK Strain code 632

Software and Algorithms

Intan RHD2000 Intan Technologies, Los Angeles http://intantech.com/RHD2000_

evaluation_system.html

KlustaKwik Harris et al., 2000; Kadir et al., 2014 https://github.com/klusta-team/

klustakwik/

Python 2.7 https://www.python.org Python 2.7.13

PTSA package https://pennmem.github.io/ptsa_new/

html/index.html

v2.0.3

Scikit-learn 0.18.1 (Python package) http://scikit-learn.org/stable/ v0.18.1

Stats model (Python package) http://www.statsmodels.org/stable/

index.html

v0.8.0

Theta Spectral Component Extraction https://data.mrc.ox.ac.uk/data-set/tsc v1.0

Other

12um tungsten wires California Fine Wire M294520

Silicon probe Neuronexus A1x32-6mm-50-177-H32_21mm

64-channels amplifier Sensorium Inc., Charlotte, VT EPA-6

Head-stage amplifier Intan Technologies, Los Angeles RHD2164
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals used were male adult (4–7 months old) C57BL/6J mice (Charles River, UK) or transgenic heterozygous Cre-driver mice

(Jackson Laboratories; obtained from C57BL/6J crossed with CamKIIa-Cre B6.Cg-Tg(Camk2a-cre)T29-1Stl/J, stock number

005359, RRID: IMSR_JAX:005359; or Dat-Cre B6.SJL-Slc6a3tm1.1(cre)Bkmn/J, stock number 006660, RRID: IMSR_JAX:006660). In

addition, we used adult male Long-Evans rats (Harlan, UK) to test rat dorsal hippocampal CA1 LFPs for the presence of the

theta-nested spectral components we identified in mice. All animals had free access to water and food in a dedicated housing facility

with a 12/12 h light/dark cycle. They shared a cage with their littermates until the surgery. All experiments involving animals were

conducted according to the UK Animals (Scientific Procedures) Act 1986 under personal and project licenses issued by the

Home Office following ethical review.

METHOD DETAILS

Microdrive implantation
Animals were implanted with a custom-made microdrive during a surgical procedure performed under deep anesthesia using iso-

flurane (0.5%–2%) and oxygen (2 l/min), with analgesia (0.1 mg/kg vetergesic) provided before and after. The drive was designed

with tetrodes (10–12 in mice; 16 in rats) aimed at the stratum pyramidale of the dorsal CA1 hippocampus (Dupret et al., 2010; van

de Ven et al., 2016). Tetrodes were constructed by twisting together four insulated tungsten wires (12 mm diameter, California

Fine Wire) and shortly heating them to bind them together in a single bundle. Each tetrode was attached to a M1.0 screw to enable

their independent movement. The drive was implanted under stereotaxic control in reference to bregma (Dupret et al., 2010; van de

Ven et al., 2016). Tetrodes were initially implanted above the CA1 pyramidal layer and their exposed parts were covered with paraffin

wax. The drive was then secured to the skull using dental cement. For extra stability, stainless-steel anchor screws had first been
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inserted into the skull. Two of the anchor screws, which were inserted above the cerebellum, were attached to 50 mm tungsten wires

(California Fine Wire) and served as ground and reference electrodes during the recordings. The placement of the tetrodes in dorsal

CA1 was confirmed by the electrophysiological profile of the local field potentials in the hippocampal ripple frequency band and

anatomical electrode tracks, as previously described (Csicsvari et al., 1999; van de Ven et al., 2016). In one additional mouse, a sin-

gle-shank silicon probe (Neuronexus, model A1x32-6mm-50-177-H32_21mm) was implanted following the same surgical procedure

to assess the CA1 laminar profile of the theta-nested spectral components (Figure 5).

Recording procedures
Recordings commenced following full recovery from the surgery. For the recordings involving spatial exploration of open-field enclo-

sures, each animal was connected to the recording apparatus and familiarized with a high-walled box containing home cage bedding

(the ‘‘sleep-box’’) andwith one of the open-field enclosures (the familiar enclosure) over a period of approximately seven days. During

this period, tetrodes were gradually lowered to the stratum oriens of the hippocampal CA1. On the morning of each recording day,

tetrodes were further lowered into the pyramidal cell layer in search of multi-unit spiking activity and sharp-wave/ripple events (Du-

pret et al., 2010; van de Ven et al., 2016). Tetrodes were not moved for at least 1.5 h before recordings started. For each recording

day, the animal was first recorded in the sleep-box (‘‘pre-exploration rest,’’�25 min). The animal was then recorded during an open-

field exploration session (�25 min) followed by another sleep-box session (‘‘post-exploration rest’’). The open-field enclosure was

either the familiar enclosure, which the animal had repeatedly been exposed to before, or a novel enclosure the animal had never

seen before. The open-field enclosures differed in shape and in the cue-cards that lined some of the walls. The results on open-field

experiments reported in the present study are based on a total of 20 mouse tetrode recording days (including 18 familiar enclosure

and 12 novel enclosure sessions, with mice exposed both to a familiar and a novel enclosure in most of the recording days; some of

these recordings were used as control recording days in a previous study by van de Ven et al. (2016)), 8 rat tetrode recording days and

4 mouse silicon probe recording days.

To assess the functional significance of theta-nested spectral components in memory-guided behavior, additional mouse record-

ings were performed on the crossword maze. Some of these recordings were used as control recording days in a previous study by

McNamara et al. (2014). The crossword-like apparatus consisted of four departure boxes and eight intersecting open tracks forming

fourteen intersections inspired by a layout used in the seminal study of Tolman and Honzik (1930). The width of each track was 5 cm

with a 1.5 cm high rim along the edges. The entire maze measured 95 cm2 excluding start boxes. The maze was painted black and

suspended 5 cm above a black table. Distal cue cards were placed on the curtain surrounding the maze and some cue objects were

placed on the supporting table dispersed throughout the maze. In order to promote spatial navigation by distal cues, the maze was

randomly rotated relative to the cues at the beginning of each day. Mice performing the crossword maze task were maintained at

85% of their post-operative body weight. On each day, the animal was allowed to explore the maze with the departure boxes closed

and in the absence of intra-maze barriers and rewards for approximately 20 min (baseline session). For the learning stage, two de-

parture boxes and one food reward location (at the end of one of the five tracks protruding from the maze) were selected as in use for

that day and the maze was configured with a new arrangement of up to seven barriers (10 cm in height) such that there was only one

path from each departure box to the reward. Mice were given up to 20 trials to learn to find the reward with the start point randomly

switching between the two departure boxes. The per trial reward was 4 ml of condensedmilk diluted 30% in water and was placed on

a plastic cap at the goal location. A similar plastic cap (without reward) was placed in each of the other 4 tracks protruding from the

maze. A glass vial (with perforated lid) containing an aliquot of the reward yet non accessible was placed inside the two departure

boxes to signal the onset of the learning stage to the animal. The board was cleaned after each learning trial to prevent the use of

an odor guided search strategy. The memory probe test was conducted 1 hour after learning with the maze maintained in the

same layout as the learning stage but without any reward. The present study includes a total of 13 recording days on the crossword

maze.

At the end of each recording day, tetrodes were raised to the stratum oriens to avoid damaging the pyramidal layer overnight.

Multichannel data acquisition and position tracking
The extracellular signals from the electrodeswere buffered on the head of the animal (unity gain op-amps, Axona Ltd) and transmitted

over a single strand of litz wire to a dual stage amplifier and band pass filter (gain 1000, pass band 0.1 Hz to 5 kHz; Sensorium Inc.,

Charlotte, VT), or (in other setups) the electrode signals were amplified, multiplexed, and digitized using a single integrated circuit

located on the head of the animal (RHD2164, Intan Technologies, Los Angeles; pass band 0.09 Hz to 7.60 kHz). The amplified

and filtered electrophysiological signals were digitized at 20 kHz and saved to disk along with the synchronization signals from

the position tracking. LFPs were further down-sampled to 1250 Hz for all subsequent analyses. In order to track the location of

the animal three LED clusters were attached to the electrode casing and captured at 39 frames per second by an overhead color

camera.

Spike detection and unit isolation
For the offline detection of spikes, the recorded signals were first band-pass filtered (800 Hz to 5 kHz). Spikes were then

detected based on the power (root-mean-square) of the filtered signal calculated in 0.2 ms sliding windows. Detected spikes of

the individual electrodes were combined per tetrode. To isolate spikes belonging to the same neuron, spike waveforms were first
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up-sampled to 40 kHz and aligned to their maximal trough (Csicsvari et al., 1998). Principal component analysis was applied to these

waveforms ± 0.5ms from the trough to extract the first three or four principal components per channel, such that each individual spike

was represented by 12waveform parameters. An automatic clustering program (KlustaKwik, http://klusta-team.github.io) was run on

this principal component space and the resulting clusters were manually recombined and further isolated based on cloud shape in

the principal component space, cross-channels spike waveforms, auto-correlation histograms and cross-correlation histograms

(Harris et al., 2000; Kadir et al., 2014). All sessions recorded on the same daywere concatenated and clustered together. Each cluster

used for further analysis showed throughout the entire recording day stable cross-channels spike waveforms, a clear refractory

period in its auto-correlation histogram, well-defined cluster boundaries and an absence of refractory period in its cross-correlation

histograms with the other clusters. Hippocampal principal neurons were identified by the shape of their auto-correlation histogram,

their firing rate and their spike waveform (Csicsvari et al., 1998).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed in Python 2.7 (https://www.python.org/downloads/release/python-2714/) using the python packages

mentioned below.

Unsupervised decomposition of local field potentials (LFPs)
Weapplied Ensemble Empirical ModeDecomposition (EEMD) to extract low-frequency, theta and supra-theta signals from raw LFPs

(Figure S1) using the PSTA package (https://pennmem.github.io/ptsa_new/html/index.html). The EEMD consists of breaking down a

time varying, non-stationary signal into its elementary signals referred to as the IntrinsicMode Functions (IMFs) by iteratively applying

the empirical mode decomposition algorithm with added white noise to prevent mode mixing (Wu and Huang, 2009). We extracted

the theta signal of each raw LFP by combining the IMFs with mean instantaneous frequencies between 5 and 12 Hz. Low-frequency

and supra-theta signalswere defined as the sumof IMFswithmean frequencies below5Hz and above 12Hz, respectively (Figure S1).

Note that we used EEMD to obtain the theta waveform and avoid harmonic artifacts related to cycle asymmetries. Besides being an

unsupervised filter (i.e., free of predefined frequency bands), one of the main advantage of the EEMD is that it deals well with asym-

metrical (non-linear) and non-stationary signals, thus diminishing filtering artifacts (such as harmonics and side band-related distor-

tions) caused by convolution filters for cross-frequency coupling analysis (Aru et al., 2015; Belluscio et al., 2012; Yeh et al., 2016).

Therefore, apart from having the theta signal automatically extracted from the raw LFP, the EEMD also provides supra-theta com-

ponents that are virtually free from harmonic artifacts (Wu and Huang, 2009).

Extracting and quantifying theta spectral components (tSCs)
To identify individual theta cycles we detected candidate peaks and troughs (local maxima and minima of the theta signal from the

EEMD) during periods of active exploratory behavior (animal speed > 2 cm/s) and with absolute values above the envelope of the

low-frequency signal. A theta cycle was defined by each pair of consecutive candidate troughs separated at least by 71ms

(�14 Hz) and no more than 200ms (5 Hz) that surrounded a candidate peak. We next averaged the spectrogram of the supra-theta

signal within each detected theta cycle (from trough to trough). Spectrograms were computed with a set of complex Morlet wavelets

with main frequencies from 10 to 200 Hz, 1-Hz steps (using scipy.signal.morlet function). The spectral signature of each theta cycle

was defined as the obtained vector carrying the mean amplitude of each spectrogram frequency. We applied Independent Compo-

nent Analysis (ICA) to the set of extracted spectral signatures using the FastICA algorithm from the scikit-learn package (http://scikit-

learn.org/stable/). Prior to ICA, dimensionality reduction of the data was performed by principal component analysis and we used the

first 5 components, which accounted for 85% of the variance. We defined the theta-nested Spectral Components (tSCs) as the

extracted independent components. Note that this approach does not require a priori knowledge of the frequency bands defining

each oscillation, as ICA allows extracting, in an unsupervised manner, statistically independent mixtures of supra-theta frequency

components in a cycle-by-cycle basis.

The distribution of the projection of a given tSC onto the set of spectral signatures was typically asymmetrical, akin to a Gaussian-

like distribution with one long tail (e.g., Figure S4B). The sign of each tSC vector was defined as the one that made its mean projection

onto the data (inner product between the tSC and all spectral signatures) positive (Figures 1C, S2A, S2D, S2H, and S8B). We defined

as the strength of a given tSC, the projection of that tSC onto a single cycle spectral signature (e.g., Figure 3A) or onto a time point of

the spectrogram (Figure 2A). As tSCs were coherent across all CA1 pyramidal layer tetrodes (inter-tetrode Pearson correlations of

tSC strength: tSC1 = 0.65 ± 0.11; tSC2 = 0.64 ± 0.12; tSC3 = 0.69 ± 0.11; tSC4 = 0.74 ± 0.11; mean across averaged inter-tetrode

pairwise correlations of all mouse recording days ± standard deviation), the tetrode with the highest gamma power was used for sub-

sequent analyses.

For analyses evaluating theta cycles nesting strong tSC signals (Figures 1, 2, 5, and S3–S5) we used a threshold for the distribution

of the single cycle tSC strengths, as:

Threshold =
23medianðjp�medianðpÞ j Þ

0:6745
+medianðpÞ (Equation 1)
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Where p is the distribution of strengths of a given tSC, and medianðjp j Þ=0:6745 is the estimation of the standard deviation of p not

considering outlying values (Donoho and Johnstone, 1994).

To calculate the theta phase coupling of tSCs strength, theta phases were computed by linearly interpolating values between

troughs, zero-crossings and peaks (Belluscio et al., 2012). The strength of tSCs as a function of theta phase (Figures 2A and S3C)

was calculated as the inner product between a given tSC and each time point of the supra-theta spectrograms (computed as before,

namely with a set of complexMorlet wavelets withmain frequencies from 10 to 200Hz, 1-Hz steps using the scipy.signal.morlet func-

tion). This allowed obtaining the time course of the tSC at the same temporal resolution as the LFPs (i.e., 1250 Hz). The tSC strength

was then z-scored and correlated with ongoing theta phase.

Principal cell spiking activity in tSC cycles
The firing activity of principal cells was triggered to the peaks of the theta cycles of each tSC or to the peaks of all theta cycles (Figures

2B andS3D) using 0.8ms time bins in order tomatch the time resolution of the LFPs. For display purpose, the triggered averageswere

smoothed with a Gaussian kernel (10 ms standard deviation). Z-scores were computed using all theta cycles. When comparing the

instantaneous firing rate of principal cells between tSCs around theta peaks (Figure 2B), we evaluated the mean rate (z-scored spike

count) of principal cells within a 20-ms window centered at the peaks of cycles assigned to each tSC using Wilcoxon signed-rank

tests. The same procedure was used to test for differences in principal cell firing rate around theta troughs.

To evaluate the changes in spike probability of principal cells (SPCs) as a function of ongoing theta phase (Figure 2C) we first calcu-

lated themean rate of each neuron for a given theta phase. The spike probability change (%) for a given theta phase and tSCwas then

calculated as:

SPCð4Þ= 1003
ratetSCð4Þ � rateoverallð4Þ

rateoverallð4Þ (Equation 2)

Where ratetSCð4Þ and rateoverallð4Þ are themean rates of the neuron for theta phase 4 computed from the theta cycles strongly nesting

a given tSC or for all theta cycles, respectively. SPCs were computed for all principal cells individually and then averaged. Theta

phases were divided in 60 equally spaced bins and SPCs were circularly smoothed with a Gaussian kernel (24 degree standard de-

viation). For this analysis, we defined the bounds of each cycle as the theta signal ascending zero-crossings surrounding the cycle

peak (i.e., each cycle was bounded from the zero-crossing preceding its peak to the zero-crossing immediately following its trough).

Note that although tSCs’ amplitude is maximal at different theta phases, none of them, nor the principal cell rate, peak along the CA1

pyramidal layer theta ascending phase. This was done for spike analysis in order to avoid cutting the theta cycle at its (second) trough

where principal cell firing rate is maximal. The same quantification was used for evaluating SPCs in theta cycles of different tSC slices

shown in Figures S5B and S5C.

The statistical significance of SPCð4Þ values was established using an ANOVA model:

SPCtSCi ;nð4Þ= b0 +
X5

tSCi = 1

btSCi
TtSCi

+
X

mouseid

bmouseid
Mmouseid + errortSCi ;n (Equation 3)

Where SPCtSCi ;nð4Þ is the mean spike probability change of neuron n for theta cycles assigned to tSCi for theta phase 4; TtSCi
is the

categorical variable receiving value 1 to designate that the observation came from tSCi theta cycles and 0 otherwise. Likewise,

Mmouseid is the categorical variable referring to animal identity. The term
P

bmouseidMmouseid was used to control for inter-mouse vari-

ance. A recorded mouse was randomly selected as reference (treatment) to avoid collinearity issues, known as the dummy variable

trap (Gujarati and Porter, 2009). However note that this does not affect btSCi
.We determined rate increases or decreases as significant

when btSCi
coefficients presented p values below ð0:05=ðð5 tSCsÞ3ð60 theta phasesÞÞz0:00017Þ in at least 5 consecutive theta

phases. The ANOVA model was fitted through the statsmodels.formula.api Python module (http://www.statsmodels.org/stable/

index.html).

Phase coupling of principal cell spiking to tSC signals
We defined each tSC signal as the IMF with the closest main frequency to a given tSC peak frequency. For spike to tSC phase an-

alyses, the instantaneous phases of tSC signals were computed through the Hilbert Transform. Then, the tSC phases were sampled

by spikes of a given neuron happening within theta cycles of the corresponding tSC or within theta cycles in different tSC strength

slices (Figures 2E, S5D and S5E). The spike-phase coherencewas quantified as themean vector length of such distribution of phases

(Siapas et al., 2005). The distributions of the mean firing phase of principal cell spikes to tSC signals (Figures 2E, S3E, and S5D) only

included neurons with spike-phase coherence higher than the 99.9th percentile of their corresponding control distribution (p < 0.001).

Control distributionswere computed by randomly circularly shifting principal cell spikes to different theta cycleswhile preserving their

original theta phase. The theta phase distribution of the neuron was therefore not changed in such controls, and the spike-phase

coherence to the tSC signal was recomputed. Each control distribution consisted of 2000 of such shifted coherences. Further, in

order to avoid spike waveform contamination biases, tSC phases were never taken from the electrode the neuron was recorded
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from. Proportion of cells significantly coupled: tSC1: 82.9%, tSC2: 65.4%, tSC3: 36.5%, tSC4: 33.2%. The same procedure was

repeated for theta cycles nesting multiple tSCs by taking only cycles with strengths of a pair of tSCs above their threshold. Only neu-

rons with a total of > 100 spikes were considered.

The spike timing of principal cells triggered to each tSC signal (Figures 2D, S3F and S3H) was assessed by first detecting the

troughs of that tSC signal within its corresponding theta cycles. Only the most negative trough within each theta cycle was used.

A given theta cycle never contributed with more than one tSC signal trough to prevent tSC signal auto-correlations to bias triggered

averages at short temporal scales (intra-theta cycle). The tSC signal was only regarded within the bounds determined by theta cycles

assigned to the corresponding tSC.

GLM prediction of tSC strength from principal cell activity
Each GLM was fitted to predict tSC strength in all individual theta cycles from the activity of simultaneously recorded principal cells

using scikit-learn. As before, the activity of a principal cell in a given theta cycle was quantified by its spike count between the theta

signal ascending zero-crossings immediately before and after the cycle peak (see Principal Cell Spiking Activity in tSCCycles section

above). In sum, the principal cell activity was represented by a matrix, in which columns represent theta cycles and rows represent

single neurons. All GLMs were 10-fold cross-validated. The set of cycles used for fitting the model are referred to as the training set,

whereas the cycles with tSC strength being predicted are referred to as the testing set. This process was repeated until all groups

were used as testing sets (i.e., by the end of the cross-validation, theGLMpredicted strength of each tSC in all recorded theta cycles).

The activity of principal cells were z-scored prior to the prediction, and such standardization was also cross-validated. More specif-

ically, the mean and standard deviation of the spike counts used for z-scoring were computed only from the training set and then

applied to all cycles. Same cross-validated standardization was used for tSC strengths. Once the tSC strengths of all cycles were

predicted, the accuracy of the prediction was quantified as the Pearson correlation between the actual and the predicted values.

In order to test the significance of such predictions, we repeated this procedure after shifting spike trains across theta cycles.

More specifically, the columns of the spike count matrix of principal cells were circularly shifted. Importantly, all columnswere shifted

together, so the correlation between neurons was preserved as well as the autocorrelation of each individual neuron. However, the

original relationship between the spike counts and the tSC strength was destroyed. For each recording session, we computed 1000

of such prediction shift controls. Original predictions higher than the 99th percentile (p value < 0.01) of the control distribution were

regarded as significant. Proportion of recording sessions with significant tSC predictions across the whole dataset: tSC1: 82.4%;

tSC2: 64.7%; tSC3: 56.9%; tSC4: 94.1%; all p < 0.01; shift prediction tests.

In order to compare between predictions achieved when the training and testing sets were taken for the same tSC to the ones

obtained for mismatched sets (Figure 3C, left), we standardized predictions to their corresponding control distributions, as follows:

br = r �meanðrcontrolÞ
stdðrcontrolÞ (Equation 4)

Where r is the actual prediction, and meanðrcontrolÞ and stdðrcontrolÞ are the mean and standard deviation of the control distribution,

respectively. We also normalized predictions by dividing them by the ones obtained when the training and testing sets were taken

from the same tSC (Figure 3C, right).

We also evaluated the relationships between tSC GLM weights, speed modulation and spatial information of individual neurons.

Speedmodulation was quantified as in Figures S2F andS2Gbut for individual neurons by using their spike counts across theta cycles

(instead of the tSC strength used in Figures S2F and S2G). Spatial information was computed as in Markus et al., (1995). More spe-

cifically, the spatial information of a given neuron was defined as:X
i

PiðRi=RÞlog2ðRi=RÞ (Equation 5)

wherePi andRi are the probability of occupancy of spatial bin i and themean firing rate of that neuron in spatial bin i, respectively; and

R is the overall mean rate of that neuron. Then, in order to test if the speedmodulation of individual neurons was related to a given tSC

GLM, we computed the Spearman correlation between the weights of each GLM and the speed modulation (Figure S6A) or spatial

information (Figure S6B). Thus, a Spearman correlation between tSC GLMweight and speed modulation (or spatial information) was

obtained for each session. Then, we compared Spearman correlation values obtained for different tSCs (Figures S6A and S6B, right

panels).

Finally, we performed two control analyses to test whether the relations obtained from the GLMs between tSC strength and

neuronal firing (Figure 3) could be explained by their co-modulation by speed. In the first analysis, we re-computed cross-validated

GLMs as before, but only using theta cycles with speed values within a 2-cm/s instantaneous speed bin (1–3cm/s, 3–5cm/s 5–7cm/s,

7-9cm/s and 9-11cm/s). Thus, we obtained for each GLM a prediction score for each of these speed bins and their corresponding

shuffling controls (averaged across 1000 circular shift controls). Then, prediction of different speed bins were averaged for each tSC

in each session and were compared to their corresponding controls (see corresponding Results section of main text). In the second

analysis (Figure S6C), we tested whether spike trains would provide additional information to GLMs trained to predict tSC

strength from speed. The underpinning rationale was that if the prediction power of spike trains was solely explained by speed,

then including spike information to a model that already contained speed as a regressor would not increase that model’s
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performance. We recomputed the cross-validated GLMs and their prediction performance in three conditions where the data

from each theta cycles corresponded to either: (1) the original speed with shuffled spikes (i.e., spikes coming from another cycle us-

ing a randomcircular shift of spike counts across theta cycles), (2) the original spikeswith shuffled speed (i.e., same as before but with

circular shift of speed values across theta cycles), or (3) the original speed with original spikes. The prediction for conditions 1 and 2

were taken as the mean of 1000 realizations. We compared across GLMs with same number of regressors in order to account for

biases due to the complexity of the model and due to autocorrelation of the shuffled features.

SWR reactivation
To detect SWR events, LFPs were referenced to a ripple-free electrode and band-pass filtered (135-250 Hz). The power (root

mean square) of the filtered signals were then calculated and summed to reduce variability. The threshold for SWR detecting was

set as 7 standard deviations from the mean power (Csicsvari et al., 1998; van de Ven et al., 2016). Only SWR events happening within

periods where the instantaneous speed of the animal was less than 2cm/s were considered. For familiar versus novel reactivation

analysis, we ensured that each exploration session contributed with the same number of spectral signatures (determined by the

session with the least number of theta cycles) for tSC extraction to avoid biases due to possible unbalanced number of theta cycles

across recordings sessions. To calculate theta co-firing (Figure 4), we calculated the spike counts of each principal cell during explo-

ration in theta windows defined by the ascending zero-crossings immediately before and after theta peaks and then we calculated

the (Pearson) correlation coefficient between each cell pair using theta cycles with the strongest strength of a given tSC. Likewise,

SWR co-firing values were calculated as the correlation coefficients between the spike counts of principal cell pairs taken from SWR

windows (100ms windows centered on the supra-threshold peaks of the ripple power).

The SWR reactivation strength btSCi
for tSCi theta cycles (Figure 4B; Theta co-firing versus SWR co-firing) was defined by the

following regression (using statsmodels.formula.api):

SWRpost;p = b0 + btSCi
qtSCi ;p+ bSWRpre

SWRpre;p + errorp (Equation 6)

Where SWRpost;p and SWRpre;p are the SWR co-firing of the pair of neurons p during pre- and post-exploration sleep/rest epochs,

respectively; qtSCi ;p is the theta co-firing of p in tSCi theta cycles. The term bSWRpre
SWRpre;p was included to control for the correlation

structure present in pre exploration SWRs.

In a complementary analysis, we fitted a linear regression to predict the change in SWR co-firing (from pre-exploration rest to post-

exploration rest) from theta co-firing (Figure 4C), as follows:

DSWRp =SWRpost;p � SWRpre;p = b0 +
X
i

btSCi
qtSCi ;p+ errorp (Equation 7)

Therefore, the contribution of each tSC to DSWRp are estimated by its corresponding btSCi
.

In order to evaluate if speed modulation of tSC strength could explain SWR reactivation results, we also performed a speed- and

location-matching control for familiar/novel enclosures (Figure S7). We implemented such a control analysis because, for example,

the SWR reactivation enhancement observed for tSC4 following exploration of novel environments could come from cycles with high

speeds, since tSC4 is highly and positively correlated with speed. Each control was computed by replacing each original theta cycle

of a given tSC by another random cycle with similar speed (no more than 0.5 cm/s difference) and occurring at a nearby location (no

more than 5 cm away; when no speed-matched cycle was available within that maximum distance, the closest cycle within the same

speed bin was selected). In this way, each control was composed by a set of theta cycles with virtually the same speed and spatial

distributions (Figure S7B) as the original set of theta cycles. For each tSC and condition (familiar or novel), we ran 1000 of such con-

trols. Finally, we compared SWR reactivation obtained as before (Figure 4B) to theta cycles matched by speed and location

(Figure S7C).

Current source density analysis
Current sources and sinks were estimated from LFP recordings from a silicon probe implanted through the somato-dendritic axis of

CA1. The current source density (unscaled) signal at time t and electrode n, CSD½t�n, was estimated as (Brankack et al., 1993; Lasz-

tóczi and Klausberger, 2014; Mitzdorf, 1985):

CSD½t�n = � �
LFP½t�n�1 � 2 � LFP½t�n � LFP½t�n+1

�
(Equation 8)

Where LFP½t�n�1, LFP½t�n and LFP½t�n+ 1 are the LFP signals at time t recorded from neighboring electrodes (50 mm apart). The silicon

probe recording site in the pyramidal layer was identified as the one with largest ripple-band power. We defined the location of radi-

atum and lacunosum moleculare layers according to the ripple and sharp-wave laminar profiles and electrode spacing. The ampli-

tude of different frequencies of CSD signals were computed by the samewavelet frameworkwe used for LFPs before (e.g., Figure 1D)

similarly to (Lasztóczi and Klausberger, 2014, 2016, 2017). Note that with this approach, CSDs were not computed from filtered LFPs

nor from averaged signals of a chosen reference (i.e., through of a given oscillation at a particular channel), but from ‘‘rawCSD signal’’

time courses. Importantly, tSCs were always identified from the pyramidal layer LFP (Figure S2H), following the procedure used in

tetrode recordings. Likewise, tSC cycles (Figure 5C) were defined from pyramidal layer LFPs, as in Figure 1D.
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Analysis of tSC strength modulation by task stages and spatial location on the crossword maze
tSCs were first extracted (as before) using the theta cycles recorded in the baseline session, and then their strength was computed in

all task stages (Figure 6A). Throughout this analysis, the tSC strengths were z-scored relative to baseline to evaluate their changes

during task stages. Thus, the normalized strength of a tSC in a given theta cycle was defined as:

tSC strZbaseline =
tSCstrength� mean

�
tSCbaseline

strength

�

std
�
tSCbaseline

strength

� (Equation 9)

Where tSCstr is the tSC strength in that cycle and meanðtSCbaseline
strengthÞ and stdðtSCbaseline

strengthÞ are the mean and standard deviation of the

tSC strength in baseline.

We quantified the modulation of a task stage (learning or probe) on the tSC strength according to the following ANOVA regres-

sion model:

tSC strZbaseline = b0 + bstageid
Sstageid + bspeedSpeed +

X
recdayid

brecdayid
Rrecdayid (Equation 10)

Where Sstageid is the categorical variable receiving value 1 to designate that the observation came from the learning (or probe) stage

and 0 if it came from baseline. Likewise, Rrecdayid denotes the categorical variable referring to recording day identity. Finally, Speed

carries the animal’s speed on that theta cycle. Thus, the modulation of a particular stage (relative to baseline) onto the strength of a

tSC is defined as bstageid (Figures 6C and 6D), whereas bspeed refers to the speed modulation of that particular tSC. Intuitively one can

understand bspeed as the slope observed when expressing tSC strength as function of speed (Figure 6B), whereas bstageid captures the

offset between the data from learning (or probe) stage relative to baseline (Figure 6B).

To rule out the possibility that the amount of time spent at different speeds or locations in different stages could skew the results in

Figure 6, we ran an additional matching control analysis. For that, speed and location of cycles from the learning and baseline stages

were matched to the probe, as the latter was always the stage with fewer theta cycles (i.e., shorter recording session). More specif-

ically, for each theta cycle in a probe test, we randomly selected one from learning (or baseline) with similar speed and location (from

no more than 5 cm away and 0.5 cm/s speed difference).

We also evaluated if the strength of different tSCs was different between the early and late learning trials. For that, we ran match

controls between early and late trials by randomly selecting, for each theta cycle detected in the last three trials, one theta cycle with

similar speed and location (from no more than 5 cm away and 0.5 cm/s speed difference) from the first three trials. For each control,

we then averaged the normalized (as before) tSC strength in the same recording day and then averaged across recording days. Sta-

tistics were performed using these bootstrap distributions. In order to rule out the possibility that the obtained statistical differences

were due to few recording days, we repeated the same procedure but removing every combination of two recording days (i.e., re-

computing results for all combinations of 11 out of 13 recording days). We found that all statistical differences between early and late

trials (shown in Figure S8H) held for all combinations.

To assess whether changes in the strength of tSCs could relate to behaviorally-relevant locations, we computed tSC strengths of

theta cycles detected in three zoneswith particular interest for goal-directed behavior on the crosswordmaze: Departure, Barrier and

Goal zones (Figure S8I). Departure and Goal zones were defined as being within 20 cm path distance to the departure boxes and the

reward location, respectively. Barrier zones were defined as being 10 cm away from the intra-maze barriers (Euclidean distance). We

used similar speed-matching control as for the comparison between early and late learning trials (Figure S8H) but by matching the

speed of each theta cycle detected in the Departure (or Barrier) zones to a theta cycle detected in the Goal zone, as the former zone

had fewer cycles; this speed-matching was performed for theta cycle detected within each task stage.

Analysis of amplitude and speed modulation of predefined gamma bands by task stages on the crossword maze
We repeated the same analysis shown in Figure 6, but for predefined frequency bands (Figures S8J–S8M). Individual theta cycles

were defined as before. However, instead of using tSC strength as computed by ICA, we analyzed the amplitude of slow- and

mid-gamma frequency bands in the detected theta cycles. Slow- and mid-gamma amplitudes were defined by (1) filtering raw

LFPs by means of a Butterworth filter (2nd order; 22 to 55 Hz and 60 to 100 Hz cutoff frequencies for slow- and mid-gamma, respec-

tively); (2) calculating the instantaneous amplitude of each filtered signal with the Hilbert transform; and (3) averaging such amplitudes

within the bounds of each theta cycle (defined by EEMD, Figure S1). Then, the same analyses performed for tSC strengths in Figure 6

were performed with such gamma bands.

DATA AND SOFTWARE AVAILABILITY

The software used for data acquisition and analysis are available for download using the web links mentioned above. Data will be

made available upon request.
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