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Modulation of neuronal oscillations holds promise for the treatment of neurological disorders. Nonetheless, conventional stimulation in
a continuous open-loop manner can lead to side effects and suboptimal efficiency. Closed-loop strategies such as phase-locked
stimulation aim to address these shortcomings by offering a more targeted modulation. While theories have been developed to
understand the neural response to stimulation, their predictions have not been thoroughly tested using experimental data. Using a
mechanistic coupled oscillator model, we elaborate on two key predictions describing the response to stimulation as a function of
the phase and amplitude of ongoing neural activity. To investigate these predictions, we analyze electrocorticogram recordings from
a previously conducted study in parkinsonian rats and extract the corresponding phase and amplitude response curves. We demonstrate
that the amplitude response to stimulation is strongly correlated to the derivative of the phase response (ρ> 0.8) in all animals except
one, thereby validating a key model prediction. The second prediction postulates that the stimulation becomes ineffective when the
network synchrony is high, a trend that appeared missing in the data. Our analysis explains this discrepancy by showing that the neural
populations in parkinsonian rats did not reach the level of synchrony for which the theory would predict ineffective stimulation.
Our results highlight the potential of fine-tuning stimulation paradigms informed by mathematical models that consider both the
ongoing phase and amplitude of the targeted neural oscillation.
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Significance Statement

This study validates a mathematical model of coupled oscillators in predicting the response of neural activity to stimulation
for the first time. Our findings also offer further insights beyond this validation. For instance, the demonstrated correlation
between phase response and amplitude response is indeed a key theoretical concept within a subset of mathematical models.
This prediction can bring about clinical implications in terms of predictive power for manipulation of neural activity.
Additionally, while phase dependence in modulation has been previously studied, we propose a general framework for
studying amplitude dependence as well. Lastly, our study reconciles the seemingly contradictory views of pathological
hypersynchrony and theoretical low synchrony in Parkinson’s disease.

Introduction
Application of brain stimulation techniques has gained
momentum over the past few decades owing to their therapeutic
potential (Lozano et al., 2019; Krauss et al., 2021). Neural

oscillations can act as anchor points in modulation of brain cir-
cuitry (Bergmann and Hartwigsen, 2021; Sullivan et al., 2021).
The association of particular network oscillations with different
brain functions, as well as their implications in many neurolog-
ical and psychiatric disorders, renders them suitable targets for
stimulation (Strüber and Herrmann, 2020; Oswal et al., 2021;
Basu et al., 2023; Zaaimi et al., 2023). Successful manipulation
of neural oscillations for the desired outcome requires clear
answers to where, how, and when to stimulate (Polanía et al.,
2018; Cagnan et al., 2019; Hollunder et al., 2022). The first
question has been extensively researched to identify the target
site based on the engaged networks (Drobisz and Damborská,
2019; Li et al., 2020; Figee and Mayberg, 2021; Kübler et al.,
2021; Rajamani et al., 2024). To address how and when
stimulation should be applied, a variety of closed-loop strategies
have been proposed, where features of the ongoing oscillation
serve as feedback (Brittain et al., 2013; Scangos et al., 2021;
Mondragón-González et al., 2024).
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Among closed-loop techniques, phase-locked stimulation has
shown promise in achieving a controlled modulation (Brittain et al.,
2013; Cagnan et al., 2017; Mansouri et al., 2018; Krugliakova et al.,
2024). In this approach, stimulation pulses are triggered at certain
phasesof theongoingoscillatory activity.Neuromodulationandplastic-
ity effects obtained through precise timing of the pulses have been
shown to be bidirectional (Huerta and Lisman, 1995; Zanos et al.,
2018; Nieuwhof et al., 2022; Li et al., 2023). This feature not only results
inhigher control and in turnmore efficient stimulationpolicies butmay
also explain the heterogeneity observed inmany open-loop stimulation
paradigms. Additionally, due to interactions between different brain
rhythms through mechanisms such as phase amplitude coupling,
phase-basedmodulation of an activity can bring about cross-frequency
changes (Salimpour et al., 2022; Duchet and Bogacz, 2024).

Despite growing interest in phase-locked stimulation, two
main bottlenecks of completely different natures have hindered
further application of this strategy. Firstly, real-time tracking of
signal properties at the resolution of milliseconds is challenging.
Thanks to recent technological advancements and developed
algorithms, several studies have demonstrated the implementa-
tion of such fast brain-machine interactions in rodents (Siegle
and Wilson, 2014; McNamara et al., 2022), nonhuman primates
(Escobar Sanabria et al., 2020; Zaaimi et al., 2023), and humans
(Reis et al., 2021; Gordon et al., 2022). Secondly, theoretical
understanding of how the state of a network oscillation at the
stimulation time, i.e., its phase and amplitude, modulates the
response remains incomplete, often resulting in an extensive
search during stimulation sessions for the desired effect. There
have been several theoretical studies proposing optimal
closed-loop policies (Holt et al., 2016; Popovych et al., 2017;
Weerasinghe et al., 2019, 2021). However, the predictions
made by these studies have not been thoroughly validated with
experimental data, severely limiting their applicability.

Mathematical models based on coupled oscillators are suitable
candidates for bridging this gap due to their ability to replicate neu-
ral oscillations (Velazquez et al., 2015; Guevara Erra et al., 2017;
Weerasinghe et al., 2021; Sermon et al., 2024). The Kuramoto
model, in particular, offers a great advantage for studying phase-
locked stimulation by adopting a phase-based description of neural
oscillators (Brown et al., 2004; Acebrón et al., 2005). Hence, net-
work dynamics can be explicitly modeled as a function of individ-
ual oscillators’ phases, which evolve over time based on their
natural frequencies and mutual interactions. This model expresses
the collective behavior of oscillators in terms of a mean phase and
network synchrony, directly proportional to the amplitude of oscil-
lations (Weerasinghe et al., 2019). Given the phase (Cagnan et al.,
2017; McNamara et al., 2022) and amplitude (Weerasinghe et al.,
2019; Hebron et al., 2024) dependence of stimulation effects, pre-
dicting the network response as a function of these two quantities
potentially provides clinically translatable predictive power, espe-
cially for patients suffering fromParkinson’s disease (PD) or essen-
tial tremor (ET; Meidahl et al., 2017; Frey et al., 2022). The gained
insight could also pave the way for combining phase-locked stim-
ulation with adaptive stimulation—a strategy based on ongoing
amplitude (Tinkhauser et al., 2017; Smyth et al., 2023)—merging
the best of both approaches.

Here, we aim to expand on the predictions introduced in
Weerasinghe et al. (2019) and test them using previously col-
lected experimental data from McNamara et al. (2022). We
review the predictions derived from the reduced (mean-field)
Kuramoto model regarding the role of ongoing oscillations’
phase and amplitude in response to stimulation. Each theoretical
prediction is tested separately against the electrocorticogram

measurements of parkinsonian rats subjected to phase-locked
stimulation. Phase-wise, we first demonstrate a strong correla-
tion between the amplitude response curve (ARC) and the deriv-
ative of the phase response curve (PRC). Regarding the role of
amplitude, we show using the full model that the largest effects
can be attained by stimulation at intermediate values of network
synchrony. Below this peak, where most brain networks operate,
the response is characterized by a slight drop and relatively stron-
ger amplification compared with suppression. Taken together,
these findings bridge the gap between theory and experiments,
unveiling an opportunity to manipulate neural activities in the
desired direction more reliably.

Materials and Methods
To investigate the effects of stimulation, we introduce our modeling
approach and describe the previously collected dataset used to validate
the model’s predictions. We also detail the techniques employed to
link theory and experiments.

Modeling framework. The Kuramoto model of coupled oscillators
was used to model the oscillations arising from the activity of a neuronal
population. In this framework, the network dynamics are described
through phases that reflect self-sustained oscillations of weakly coupled
oscillators (Strogatz, 2000). We employed such a network model to ana-
lyze how external stimulation affects the network activity of a population.
In this context, neurons or neural microcircuits with periodic behavior
can be regarded as oscillators that interact with each other
(Weerasinghe et al., 2019), collectively giving rise to the network activity
often recorded in experiments as local field potentials (LFPs) or ECoG
oscillations (Fig. 1A,B; Breakspear, 2017; Bick et al., 2020).

To assess the impact of external stimulation on these networks, one
must make an assumption about how individual oscillators respond to
stimulation. Neurons may vary in their phase response depending on
their type and various regulating factors (Fink et al., 2013; Goldberg et
al., 2013; Phillips et al., 2020). We adopted the classic case compatible
with the Hodgkin–Huxley model, where a spiking neuron exhibits a
biphasic response featuring both phase delay and advance regions
(Goldberg et al., 2013). This response behavior, known as type II, has
been observed experimentally (Netoff et al., 2005; Akam et al., 2012)
and characterized by a slow-down region after the spiking during the
refractory period and a speed-up region closely before the spiking
(Fig. 1C; Smeal et al., 2010). We used Z(u) = − sin u as a simple phase
response function that satisfies these conditions (Fig. 1D,E).

The Hodgkin–Huxley model used to demonstrate the concept of a
biphasic phase response was developed using the original conductance
values and rate functions (Hodgkin and Huxley, 1952). The effect of
stimulation was incorporated as an injected square pulse of current
with a width of 50 µs. Numerical simulations were performed in
MATLAB using the Euler method with 0.01 ms time steps.

Full Kuramoto model. The dynamics of a finite number of coupled
oscillators with noise are governed by Sakaguchi (1988):

u̇i = vi

+ K/N
∑N

j
sin (uj − ui)+ ji + I(t)Z(ui) for i = 1, . . . , N.

(1)

This set of differential equations describes how the phase of each oscilla-
tor, ui, evolves in time while interacting with other oscillators through a
global coupling constant K and being subject to external stimulation I(t)
and independent white noise ji:

ji(t)
〈 〉 = 0 , ji(t)jj(t

′)
〈 〉

= 2Dd(t − t′)dij, (2)

where D represents noise intensity. d and dij are the delta Dirac and
Kronecker delta functions, respectively.
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To investigate macroscopic properties of these networks, an order
parameter is defined as follows:

r = 1
N

∑N

j
eiuj = reic, (3)

which describes the network activity in terms of the level of synchrony,
r (ranging from 0 to 1), and the mean phase, c. It can be shown that the
experimentally measured oscillation amplitude is proportional to the
value of synchrony (Weerasinghe et al., 2019).

Numerical simulations were conducted in MATLAB using the Euler–
Maruyama method with a time step 0.5 ms to discretize the system in
time. We verified convergence of the numerics for this timestep value.
The natural frequencies of oscillators were randomly sampled from
a Cauchy distribution with a mean frequency of v0 and a width of g.
To simulate phase-locked stimulation, conditions similar to those in
McNamara et al. (2022) were applied. In each stimulation block, a target
phase was chosen, and a pulse was delivered when the calculated mean
phase crossed this target and >80% of a beta cycle had elapsed since the
previous pulse.

Reduced Kuramoto model. In the limit of an infinite number of oscil-
lators and under certain assumptions regarding the distribution of natural
frequencies, the collective behavior of the network can be described in a
simpler way solely by the time evolution of the order parameter (Ott and
Antonsen, 2008; Bick et al., 2020). The dynamics of the system, assuming
Z(u) = − sin u, are reduced to two differential equations governing the
amplitude (synchrony r) and mean phase c of the network:

dr
dt

= −gr+ Kr
2

(1− r2)+ I(t)
2

(1− r2) cos (c), (4)

dc
dt

= v0 − I(t)
2r

(1+ r2) sin (c), (5)

where g represents the width of the natural frequency distribution that is
centered around v0. The last terms in the amplitude and phase equations
represent the instantaneous population ARC and PRC, respectively. The
ARC represents changes in amplitude as a function of the stimulation phase,
and the PRCquantifies variations in themeanphasewith respect to the stim-
ulation phase.

In the absence of noise, such networks would reach a steady-state
condition with fixed values of r. However, in real networks, the oscillation
amplitude fluctuates due to finite size effects, noise, and changes in cou-
pling resulting from synaptic plasticity. Nonetheless, the reduced model
can be seen as a phenomenological platform that provides intuitions and
preliminary predictions. Accordingly, we employed this model as the basis
for generating predictions, which were then further refined using the full
model to partially capture the missing effects in the reduced model.

ECoG recording from parkinsonian rats. In order to test the validity
of the theoretical predictions, we used electrocorticogram (EcoG) record-
ings collected from rats in McNamara et al. (2022). In this study, in brief,
rat models of PD were created through unilateral lesions of the dopami-
nergic neurons in substantia nigra, resulting in pathologically elevated
beta activity in the cortico-basal ganglia network. Stimulating electrodes
were then implanted in the globus pallidus (GPe), and activity was
recorded using ECoG. Using a real-time implementation of the phase
tracking algorithm “Oscilltrack” (Sharott and McNamara, 2022), each
subject underwent phase-locked stimulation at eight equally spaced tar-
get phases based on the ongoing beta signal. Each trial was targeted at a
specific phase and consisted of 10–14 stimulation blocks, each lasting
20 s and separated by 5 s off-epochs where no stimulation was applied
(Fig. 2A). Full details are presented in McNamara et al. (2022).

Figure 1. The Kuramoto model of coupled oscillators to model oscillatory neural activity. A, B, Snapshots of two example sets of coupled oscillators with low (A) and high (B) synchrony levels.
Dispersed oscillators result in small oscillatory signal and therefore low amplitude, while packed oscillators represent large oscillation amplitude. C, Shift of spiking in a Hodgkin Huxley model as a
result of external stimulation. Depending on the stimulation time with respect to the spiking cycle it can lead to phase advance (top) or delay (bottom). The dashed lines represent the spiking
behavior in the absence of stimulation. D, Schematics of the biphasic response behavior incorporated in the model. E, Phase response function of an individual oscillator (here, − sin u).
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ECoG recordings were obtained at a sampling rate of 20 kHz.
Stimulation artifacts were initially removed by interpolating the signal
from the start of the electrical impulse to 1.5 ms after. The resulting
signal was then downsampled to 2 kHz using an anti-aliasing filter.
A fourth-order bandpass Butterworth filter was subsequently applied to
the downsampled signal. The Hilbert transform was then used on
the filtered signal to extract the envelope amplitude and phase of the
beta oscillations.

Experimental response curves. The primary approach to extract the
experimental ARC and PRC was the block-based method, in which the
average behavior of the network during each 20 s on-epoch was com-
pared with the preceding 5 s off-epoch. More specifically, for the block-
based ARC, the average Hilbert amplitude, �a, of the signal in each epoch
was calculated, and the difference represented the amplitude change at
the corresponding phase (Cagnan et al., 2017; Duchet et al., 2020;
Fig. 2B). Evaluating this change for all target phases enabled us to recon-
struct the experimental (block-based) ARC for each animal:

ARCb = aon − aoff . (6)

To calculate the block-based PRC, phase trajectory in the 5 s
off-epoch was used to fit a linear model for the evolution of the
unwrapped phase. Using this model, the expected phase of the system
under no stimulation at the end of the 20 s epoch, ĉ, could be estimated.
The difference between this estimated unwrapped phase in the absence of
stimulation and the actual unwrapped phase, c, as a result of the stimu-
lation was then normalized by the number of pulses (Npulse) in the

on-epoch (Fig. 2C). This normalized change was calculated for all target
phases, similar to the ARC, to establish the (block-based) PRC for
each animal:

PRCb =ĉ− c

Npulse
. (7)

Considering the different sites for stimulation (GPe) and recording
(cortex), as well as variability across animals, all curves were phase-aligned
based on the most suppressive phase for the purpose of group analysis. To
examine the relationship between the response curves, the derivative of the
PRC with respect to phase was computed using central differencing.

When quantifying the size of amplitude change under different oscil-
lation amplitudes, the method above averages oscillations over a rela-
tively long period compared with the beta cycle’s time scale. To
capture more transient changes in the amplitude, we also employed a
pulse-based approach. In this technique, the average amplitude within
10 ms before and after each pulse was used to establish the amplitude
response as a function of the pre-pulse amplitude (Fig. 2D).

A customMATLAB script was developed to process the experimental
recordings and extract the response curves. Statistical tests and addi-
tional data visualizations were carried out using Python-based packages.
Pearson’s correlation coefficients (R) were calculated to assess the rela-
tionship between the ARC and the PRC derivative. Statistical significance
of phase dependence in individual ARCs and PRCs was examined using
one-way analysis of variance (ANOVA). The relationship between the
correlation strength R and the resulting p value from ANOVA was
also quantified using the Spearman correlation coefficient (rs).

Figure 2. Analysis of experimental data for testing theoretical predictions. A, Summary of phase-locked experimental trials conducted in parkinsonian rats in McNamara et al. (2022). Each trial
targeted a certain phase and was divided into 10–14 blocks. Two example signals, one representing stimulation at a suppressing phase (green) and one at an amplifying phase (red) are shown.
B, Schematic of block-based quantification of the phase response. C, Schematic of block-based quantification of the amplitude response. D, Schematic of pulse-based quantification of the
amplitude response. E, Model fitting algorithm flowchart. Dynamic features of the subject-specific experimental signal were fed into an optimization solver which updates model parameters
to minimize the difference between the model and experimental signals.
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Model fitting. To test the prediction based on oscillation amplitude, it
was necessary to estimate the networkparameters that could reproduce rel-
evant features of theECoGrecordings used for this study.Anoptimization-
based model fitting algorithm was developed in MATLAB to fit the finite
Kuramoto model to individual subjects. The algorithm received three
dynamic features of the signal (Duchet et al., 2020): power spectrum den-
sity (PSD) of the signal, probability density function (PDF) of the envelope
amplitude, and PSD of the envelope amplitude (Fig. 2E). These features
embed the statistics of the signal intensity along with the temporal varia-
tions of both the signal and its amplitude (Sermon et al., 2023). It then
employed MATLAB’s surrogate optimizer (surrogateopt) with batch
update interval 1 to minimize the following error:

f = 1
3

∑
(PSDData − PSDModel)

2

∑
(PSDData − PSDData)

2 +
∑

(envPDFData − envPDFModel)
2

∑
(envPDFData − envPDFData)

2

+
∑

(envPSDData − envPSDModel)
2

∑
(envPSDData − envPSDData)

2

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠
.

(8)

Given the different scale of the measured values and the model network
activity, both experimental and simulated signals were z-scored to ensure
comparability. PSDswere calculated usingWelch’smethodwith frequency
resolution of 1 Hz (1 s window length) and 50% overlap. The optimization
output provided values for four network parameters: mean frequency ω0,
width of the distribution γ, coupling constant K, and standard deviation
of the noise σ. The maximum number of function evaluations for the sur-
rogate optimization was set to 500. Network simulations at each optimiza-
tion step were carried out with N=200 oscillators which were randomly
sampled from a Cauchy distribution with the mean ω0 and width γ.
Each set of parameters was simulated 10 times to account for different real-
izations of noise, and the dynamic features from the resulting signals were
averaged to calculate the optimization error.

A parameter recovery study was also performed using synthetic data
to investigate whether the values obtained from the fitting procedure for
individual parameters are separately identifiable with respect to network
behavior. This series of simulations and optimizations were performed
with fewer oscillators (N = 50) and lower frequency resolution for
PSDs to reduce computational cost while still capturing the model’s gen-
eralizable features.

Results
The state of simple oscillatory systems can be summarized by
their phase and amplitude (Fig. 3A). Hence, a clinically relevant
predictive power may arise from studying the response to stim-
ulation as a function of these two quantities tracked from signals
of interest (e.g., tremor in ET or beta in PD). We first introduce
the predictions made by the reduced model regarding the phase
and amplitude dependence of the response to stimulation. We
then examine the correlation between the PRC and ARC in the
data from parkinsonian rats. Finally, we compare amplitude
dependence in the experimental response with simulations of
the best-fitting Kuramoto models.

Predictions from the reduced model
First, we focused on the phase dependence of the response beha-
vior (Fig. 3B). Given a specific phase response function for
individual oscillators, the reduced model predicted that the pop-
ulation PRC, which represents the phase response of the network,
mirrors the form of the individual oscillators’ response function
(Weerasinghe et al., 2019). More importantly, the amplitude
response of the population summarized by the ARC will be neg-
atively correlated with the derivative of the PRC. To develop an
intuition about this prediction, two extreme scenarios of maxi-
mum suppression and maximum amplification can be helpful.
In the former case, when stimulating the network at the mean

phase of p, the trailing oscillators are in the “slow down” region
of their cycle while the leading ones have entered the “speed up”
regime (Fig. 3B, left inset). As a result, stimulation enlarges the
gap between oscillators, causing a more desynchronized system.
Conversely, in the maximum amplification scenario, stimulating
at the mean phase of 0 causes leading and trailing oscillators to
experience opposite effects, making them more tightly packed
and thus synchronized (Fig. 3B, right inset). Hence, the maxi-
mum suppression and amplification correspond to phases where
the absolute slope of the PRC is the largest.

Next, we sought to predict the network response in terms of
amplitude dependence. In the reduced model, the last term of
Equation 4 I

2 (1− r2) cos (c)
( )

describes the instantaneous effect
of a stimulation impulse, and the scaling factor of this term
1
2 (1− r2)
( )

is plotted in Figure 3C. This plot illustrates that the
attainable absolute change in amplitude from stimulation drops
continuously as a function of synchrony in the network. In other
words, the theory suggests that stimulation should have the great-
est effect when applied at low oscillation amplitudes and becomes
less effective at large amplitudes. An intuition for this prediction
can be obtained by looking at two ends of the synchrony spectrum.
Any change in network synchrony requires differential effects of
stimulation on the oscillators which leads to an increased or
decreased gap between them. In a network with low synchrony,
the high dispersion among oscillators allows for the maximum
attainable change as a result of stimulation (Fig. 3C, left inset),
whereas in a highly synchronized system, all oscillators experience
nearly the same change, leading to minimal impact on the collec-
tive synchrony (Fig. 3C, right inset).

Examining Equation 4 for amplitude in the reduced model,
the last term represents the combined effect of phase and ampli-
tude which can be visualized as a 3D surface (Fig. 3D). For a more
detailed assessment of the model’s predictions, we tested each
component separately using the experimental data.

Correlation between the PRC derivative and ARC
To test the theoretical predictions regarding ARC and PRC, we
extracted the corresponding curves from the animal data.
Analysis of changes in beta power as a function of target phase
in McNamara et al. (2022) revealed nearly antiphase maximum
amplification and suppression in all animals. This general trend
suggests that Z(u) = − sin u can be viewed as a reasonable
assumption for phase response function of individual oscillators
(Eq. 1). Nevertheless, ARC and PRC curves for each animal
enabled a more comprehensive analysis of the predictions. The
block-based method, described above, was employed to calculate
the phase and amplitude changes in the high-beta activity as a
function of the phase of stimulation. The average PRC, pooled
across all animals, exhibited the previously described “slow
down” and “speed up” regions for the population activity
(Fig. 4A). The corresponding ARC also confirmed antiphase
maximum suppression and amplification with smooth transi-
tions in between (Fig. 4B). More importantly, the core prediction
of the model, which posits a correlation between ARC and PRC
derivative, was examined by establishing the derivative curve cal-
culated through central differencing (Fig. 4B). Comparing ARC
and PRC derivative revealed a negative correlation, in agreement
with the model’s prediction.

To further quantify this correlation and its variability across ani-
mals, we examined the phase and amplitude responses for 13 indi-
vidual animals at each of the eight target phases (individual
response curves available in Extended Data Fig. 4-1). The data
across all animals and phases showed a tight distribution around
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a linewith a negative slope, resulting in a high correlation coefficient
(R = 0.84) which underscored the validity of the predicted rela-
tionship (Fig. 4C; individual correlations available in Extended
Data Fig. 4-2). To assess how reliably the amplitude response can
be predicted given a specific PRC, the relationship between the cor-
relation strength, R, and the presence of an effect of phase in the
PRC was explored. The latter was represented by the p value
from the statistical tests where lower values indicate significant
phase dependence in the PRC. Plotting these values for different

subjects revealed an interesting trend regarding variability across
animals (Fig. 4D). All subjects with statistically significant PRCs
exhibited a strong correlation with their amplitude response
(R . 0.8). Notably, the phase response of the only subject lacking
this correlation did not reach the significance threshold.
Additionally, subjects with a higher effect of phase tended to
show stronger correlations (rs = −0.71, p = 6.7× 10−3). These
results suggest that when certainmodel assumptions are met—spe-
cifically, when phase dependence is present in the response—a tight

Figure 3. Theoretical predictions of the network response by the Kuramoto model. A, Phase and amplitude as the main signal properties. Predictions are based on the network’s state in terms
of these properties. B, Model-based phase dependence of the network response. ARC follows the negative derivative of PRC. Two oscillators’ snapshots depict extreme cases of maximum
suppression (left) and maximum amplification (right). C, Model-based amplitude dependence of the absolute change. Two oscillators’ snapshots illustrate stimulation-induced changes in net-
works with high (left) and low (right) synchrony. D, Combined effect of signal’s phase and amplitude on the amplitude response.

6 • J. Neurosci., April 9, 2025 • 45(15):e2269242025 Mirkhani et al. • Validating Modeled Neural Response to Stimulation

https://doi.org/10.1523/JNEUROSCI.2269-24.2025.f4-2


correlation between ARC and PRC derivative may yield clinical
insights when evaluating stimulation outcomes.

Contributing factors in amplitude modulation of the response
Following the study of phase dependence, we proceeded with
analyzing how the network response is influenced by the ongoing
oscillation amplitude. The previously described prediction on the
dependence of stimulation effects on the ongoing amplitude
(Fig. 3C) was derived from the instantaneous effect of stimula-
tion, i.e., the effect was defined as the difference between ampli-
tude of oscillations just after and just before the pulse. However,
to understand longer-term effects, one needs to also consider the
dynamics of the system between the pulses. The changes in the
oscillation amplitude in the model are described by Equation 4.
It states that the amplitude r is not only influenced by the stim-
ulation term but also depends on the coupling K and the distri-
bution width g, which together determine how amplitude evolves
in subsequent time steps. In other words, it is not possible to
study the longer-term response as a function of amplitude with-
out considering the intrinsic network parameters. In addition,
oscillation amplitude is naturally bounded by the minimum
and maximum levels of synchrony (0 , r , 1).

To develop an intuition about the interaction of these contrib-
uting forces in amplitude modulation, a seesaw analogy can be
useful (Fig. 5A). Each position of a seesaw corresponds to a

specific balance between two opposing forces: one pushing the
system toward synchrony and the other causing desynchroniza-
tion. Within the Kuramoto framework, intrinsic noise D and
width g of the natural frequency distribution, along with external
stimulation at phases around the mid-ascending part of the cycle
(specific to these experiments), tend to reduce the synchrony of
the network, tipping the balance toward lower r values
(Fig. 5A, top). On the contrary, coupling K in the system and
antiphase stimulation—here occuring around the mid-
descending part—shift the balance in favor of higher r values
by enhancing the network synchrony (Fig. 5A, top).
Furthermore, analogous to a real seesaw that is constrained at
both ends, there are lower and upper bounds on how the force
imbalance is reflected in the network (Fig. 5A, bottom).

As mentioned earlier, the introduced Kuramoto model’s term
for absolute change as a function of oscillation amplitude high-
lights only the stimulation-induced instantaneous changes in
the time evolution of amplitude (Fig. 5B, top), without taking
into account network dynamics influenced by intrinsic parame-
ters. The reduced model offers an initial insight into the interac-
tion of these contributing factors. In asynchronous networks
(Fig. 5B, left inset), relatively high stimulation-induced perturba-
tions are partially offset by network’s tendency to return to its
steady state with a low synchrony during the intervals between
the pulses. As the network begins transitioning to a partially

Figure 4. Experimentally validated relationship between ARC and PRC. A, Average PRC pooled across all animals. The average response exhibits phase advance and delay for the population
activity. B, Average ARC (solid line) and PRC derivative (dashed line) pooled across all animals. The average amplitude response in rats is negatively correlated with the derivative of the phase
response. Individual response curves are presented in Extended Data Figure 4-1. C, ARC as a function of PRC derivative for 13 animals and eight target phases. Individual correlations are presented
in Extended Data Figure 4-2. D, Relationship between the correlation coefficient and the significance of phase dependence within animals. Subjects (represented by circles labelled with their
corresponding numbers) with more statistically significant phase dependence tend to have a stronger correlation between ARC and PRC derivative.
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synchronized state (Fig. 5B, middle inset), a slight decrease in the
effect of individual stimulation pulses emerges, but the network is
notably more susceptible to changes, reflected in a smaller decay
between pulses, which translates into larger shifts in average net-
work synchrony. Lastly, under substantial levels of synchrony
(Fig. 5B, right inset), not only is the stimulation effect dimin-
ished, but the network again shows a strong tendency tomaintain
its steady state, leading to smaller net changes in synchrony. Such
variations in network tendencies could be better understood by
looking at its characteristic curve (Extended Data Fig. 5-1).

To further characterize the absolute change as a function of
amplitude and link the model’s prediction with the experimental
data, changes of oscillation amplitude within similar stimulation
blocks were simulated (Fig. 5C, top). The size of impulse was
adjusted to match the observed change in beta power in experi-
ments. These simulations were performed using the finite model
with stochastic oscillators, and curves corresponding to no stim-
ulation, most suppressive, and most amplifying phases were gen-
erated. The combined effects of external stimulation and intrinsic
parameters constrained by bounds on both ends were consistent
with the above descriptions. The relative weight of each contrib-
uting factor at different synchrony levels can be better understood
by examining the time evolution of amplitude across three dis-
tinct levels of synchrony (Fig. 5C, bottom). In a highly noisy/
low coupling network, only the amplifying phase caused a small
upward shift in amplitude, as the already low amplitude could
not be significantly reduced by stimulation at the suppressing
phase (Fig. 5C, left inset). Under intermediate levels of coupling,
far from both bounds of synchrony, a two-sided stimulation effect
emerged in the response (Fig. 5C, middle inset) which then disap-
peared under asymptotically high levels of coupling due to the
small instantaneous effect of stimulation (Fig. 5C, right inset).

Amplitude dependence of the response in parkinsonian rats
Having refined the prediction for the magnitude of the stimula-
tion effect as a function of synchrony level, we aimed to test it by
extracting the corresponding response behavior from the rat
data. As outlined in the Materials and Methods section, the
oscillation amplitude in the model represents a normalized
amplitude corresponding to the level of synchrony. Therefore,
to compare experimental curves with theoretical predictions,
one needs to first estimate the network synchrony corresponding
to the measured ECoG. The model fitting algorithm was
employed to determine the subject-specific network parameters
v0, g, K , D. A series of parameter recovery studies using syn-
thetic data revealed that while individual parameters could not
be reliably recovered (Extended Data Fig. 6-1), the resulting net-
work synchrony derived from each set of parameters was recov-
ered with reasonable confidence (Fig. 6A). As a result, rather than
focusing on exact parameter values from the fitting output, the
corresponding network synchrony has been reported which
indeed is more directly relevant to the theoretical prediction.
The fitting was performed to replicate three key dynamic features
of the signal for each animal (Fig. 6B).

Results of the model fitting implied that underlying networks
producing the measured signals may possess very low sustained
synchrony across all animals (Fig. 6C). To highlight that different
combinations of network parameters can lead to the same oscil-
lating behavior, reflected by the synchrony level, the fitting algo-
rithm was run multiple times for each subject. Although output
parameter values varied within each subject, all combinations
consistently represented similar levels of network synchrony
(Extended Data Fig. 6-2). The resulting model networks pro-
duced beta oscillations similar to those observed in the experi-
ments (Fig. 6D).

Figure 5. Contributing factors in amplitude modulation of the network response. A, A seesaw analogy of a network with two opposing forces and natural upper and lower bounds. External
stimulation interacts with intrinsic parameters to determine the synchrony level in a constrained system. B, Stimulation-induced instantaneous disturbance as a function of oscillation amplitude.
Three examples of synchrony evolution in the reduced model, each representing different steady-state synchrony levels. The extent of change in network synchrony as a result of stimulation
depends on the size of the induced disturbance as well as network tendencies at that specific amplitude. Variations of such tendencies can be visualized by the network’s characteristic curve
presented in Extended Data Figure 5-1. C, Simulated block-based change in oscillation amplitude as a function of amplitude prior to stimulation in the full model. Three instances of amplitude
evolution within a block illustrate the combined effect of stimulation-induced disturbance, intrinsic network tendencies, and synchrony boundaries.
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Next, having identified the synchrony range of interest, we
investigated the experimental data under two synchrony win-
dows (block-based vs pulse-based variations) to assess whether
the experimental responses aligned with the response of a model
operating in that regime (Fig. 6E). As demonstrated in the previ-
ous section, low-synchrony networks are predicted to generally
exhibit a higher propensity for amplification compared with

suppression (Fig. 5C). By closely examining the blocks in the
experiments, the amplitude change as a function of average
amplitude prior to the stimulation epoch was obtained under
three conditions: reference (no stimulation applied) plus the
two phases achieving the highest amplification and highest sup-
pression (Fig. 6F). At a given state, the inherent noise and finite
number of oscillators caused a regression to the mean in the

Figure 6. Network response dependence on oscillation amplitude. A, Parameter recovery using synthetic data. The model successfully recovers network synchrony from a set of simulated
network activities. The recovery results for individual parameters are shown in Extended Data Figure 6-1. B, Results of the fitted dynamic features of the signal for an example animal. The power
spectral density (PSD) of the signal and its amplitude, along with the probability density function (PDF) of the amplitude, were used to find the best-fitting parameters. C, Extracted mean
synchrony for different subjects obtained by fitting the Kuramoto model to experimental recordings. The dashed line represents the mean synchrony when desynchronizing factors approach
infinity. Details of the fitting for each subject are provided in Extended Data Figure 6-2. D, Example epochs of experimental recordings compared with simulated activity generated by the best-fit
model. E, The relevant range of synchrony in the seesaw analogy. Block-based and pulse-based analyses provide different windows into the network synchrony. F, G, Block-based changes in
amplitude as a function of pre-stimulation amplitude, demonstrating stronger amplification compared with suppression in this regime. H, I, Pulse-based changes in amplitude as a function of
pre-pulse amplitude, revealing a drop in effect size at lower ends of the synchrony range through this quantification method. The reference-subtracted curves for both block-based and pulse-
based approaches are presented in Extended Data Figure 6-3.
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absence of stimulation. The model’s response, based on best-fit
parameters, aligned with the experimental curves (Fig. 6G).
The reference-subtracted regression lines reflected a significant
increase in the stimulation effect during the suppressive phase,
along with a more subtle, nonsignificant increase for amplifica-
tion, and an overall more pronounced amplification in this
regime (Extended Data Fig. 6-3A).

Lastly, recognizing that using averaged amplitudes over on-
and off-epochs narrows the analyzed synchrony window (higher
and lower synchrony values are averaged out), similar amplitude
dependence curves were also derived based on individual stimu-
lation pulses instead of blocks. This approach accounts for a
wider range of momentary synchrony levels that the network
experiences. It is worth noting that, while this approach uses
smaller windows to calculate changes in amplitude, it still
combines stimulation-induced instantaneous effects with peristi-
mulus restoration governed by intrinsic parameters. The experi-
mental pulse-based curves generally exhibited similar trends to
the block-based ones, except even smaller changes at the lower
end and a peaked trend for the amplification (Fig. 6H). This is
consistent with the insight from the previous section that the
averaged amplitude change (Fig. 5C, top) exhibits a small dip
at the low end of synchrony in contrast to the instantaneous
effect of pulses (Fig. 5B, top). These differences were again in
agreement with the curves extracted from the best-fit models
(Fig. 6I). To visualize the net effects of stimulation, the corre-
sponding reference line could be subtracted from the amplifica-
tion and suppression lines (Extended Data Fig. 6-3B).

Discussion
In this study, we elaborated on the predictions of a mathematical
model based on coupled oscillators regarding the effects of phase-
locked stimulation on a population activity. The model put forth
predictions on how a neuronal population would respond to
stimulation based on its current state in terms of phase and level
of synchrony. We utilized a previously collected dataset from the
study of phase-locked stimulation in rat models of PD to test
those predictions.

For phase dependence, the prediction implied that the shape
of ARC would follow the negative of the derivative of PRC, and
all except one animal exhibited response behaviors consistent
with the model’s prediction. This key relationship, validated for
the first time in this study, has been investigated previously
with different models. Using the Wilson–Cowan model, it has
been demonstrated (Duchet et al., 2020) that the phase shift
between the ARC and PRC converges to p/2 in the linearized
model. The phase shift was however larger than π/2 in the non-
linear Wilson–Cowan model and in some of the data from
patients with ET. The predictive feature of the PRC derivative
was also discussed in Wilson and Moehlis (2014); Wilson et al.
(2015) through a noisy oscillators model, and in Holt et al.
(2016) with a network of conductance-based neurons. On the
other hand, several studies (Escobar Sanabria et al., 2020;
Zaaimi et al., 2023; Hebron et al., 2024) have adopted mathemat-
ical frameworks to explain the phase-dependent response to
stimulation. Findings of these studies have been generally consis-
tent with the explicit relationship between the ARC and PRC dis-
cussed here which is derived from a phenomenological model. In
addition, when evaluating the effect of phase, it must be kept in
mind that perfect phase tracking in practice is not feasible, espe-
cially at low amplitudes due to a lower signal-to-noise ratio.
Consequently, quantifying the effect of phase based on the higher
amplitude portions of the signal may provide a clearer

perspective. Alternatively, collecting more data can help mitigate
this issue by averaging out the variations caused by imperfect
tracking, which was the case for the data used in this study.
Overall, our results support the proposal that a prior estimate
of the PRC [such as measurements conducted for cortical
(Stiefel et al., 2008), subthalamic (Farries and Wilson, 2012), or
pallidal neurons (Goldberg et al., 2013)] may be a useful tool
for determining the suppressing or amplifying phase for
closed-loop DBS without a full search of the parameter space
(Holt et al., 2016). This approach could provide valuable guid-
ance for defining optimal stimulation parameters in clinical
settings.

Amplitude dependence is a relatively unexplored aspect of the
network response. Focusing solely on the instantaneous effects of
stimulation, the theory suggests that stimulation should become
ineffective at high network synchrony. However, the amplitude
dependence was demonstrated to be more complex as other con-
tributing factors such as network’s tendencies and bounds inter-
act with stimulation-induced changes. These interactions would
lead to a decay in the effect size of stimulation at both ends of the
synchrony range. Moreover, distinct characteristic behaviors
may emerge when amplifying oscillatory activity compared
with its suppression, as exemplified by the stronger amplification
observed in this study. This highlights the significance of deter-
mining the synchrony levels of the target network beforehand
if the goal is to optimize stimulation efficiency based on ongoing
amplitude. This could explain some of the observed differences in
suppressing pathological activity in patients with PD compared
with those with ET (Brittain et al., 2013; Schreglmann et al.,
2021). We proposed here that fitting the Kuramoto model to
individual recordings could provide subject-specific models,
enabling tailored stimulation paradigms according to the subject
and network under study. It is also important to note that the size
of electrical impulses and the attainable modulation in clinical
settings, which was simulated here to achieve comparable
changes in power, could shift the location and intensity of peaks
in the amplitude dependence of the response. The first-order
trend, which is a general drop of the effect size with increasing
amplitude, has been reported in several studies (Wang et al.,
2022; Hebron et al., 2024) and agrees with the intuition that
the stronger the synchrony of a network, the harder it is to
disrupt.

Beta oscillations in PD are considered an exemplar of patho-
logical hypersynchrony. Therefore, it could be considered sur-
prising that the stimulation effect did not drop at higher
amplitudes in parkinsonian rats. Importantly, however, high syn-
chronization in the Kuramoto model represents almost complete
alignment of individual oscillators (Fig. 3C, right). In the parkin-
sonian brain, beta synchronization between neurons is massively
elevated compared with healthy animals, where there is very little
oscillatory synchronization (Raz et al., 2001; Mallet et al.,
2008a,b); However, if oscillators in the model represent individ-
ual neurons or ensembles of neurons in the basal ganglia circuit,
these pathological levels of synchronization do not approach the
levels of hypersynchronization in the model. For example, in the
subthalamic nucleus of parkinsonian patients, the maximum
proportion of individual neurons that oscillate at beta frequency
and/or are synchronized with cortical beta oscillations is ∼60%,
with a mean of 20–30% (Sharott et al., 2014, 2018). In the context
of developing novel approaches for DBS in PD, this suggests that
even highly patholophysiological levels of beta synchronization
remain in the region where they remain responsive to modula-
tion by phase-dependent stimulation. It remains to be seen
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whether this is also the case for pathophysiological activities with
higher levels of synchronization, such as epilepsy.

It is worth highlighting that, besides phase and amplitude,
another commonly studied aspect of response prediction is the
frequency of oscillations and their entrainment to external rhyth-
mic stimulation—a phenomenon described by Arnold tongues.
However, our analysis focused on modulating a narrow band—
specifically, beta oscillations—in an adaptive manner. Although
an average stimulation frequency can be defined in such
closed-loop approaches, establishing a direct connection is chal-
lenging because only one band is targeted and the stimulation
strength does not vary significantly.

With regard to limitations, although themodel seems to capture
the mean synchrony for subject-specific models that reproduce the
ECoG recordings, it falls short of replicating the variability of oscil-
lation amplitude observed in the animals, as seen when comparing
the x-axes in Figure 6F–I. This limitation could potentially be
addressed by allowing for changes in the coupling as a result of
synaptic plasticity and/or using a more generalized coupled oscilla-
torsmodel where oscillators are allowed to vary in their amplitudes.
Additionally, while the model also makes predictions about specific
stimulation phases that lead to suppression or amplification given a
specific response function Z(u), only the correlation between ARC
and the PRC derivative was tested due to the separate stimulation
and recording sites in the experiments. Applying the developed
framework on experimental data where sensing and stimulation
has been conducted through the same electrode may facilitate fur-
ther validation of the model’s prediction. Moreover, the focus here
was placed on beta rhythms originated from basal ganglia which
feature a bursty characteristic with very low sustained synchrony.
Testing the model through other brain rhythms and networks
will provide a more comprehensive image of the effects of phase-
locked stimulation. Lastly, alternative methods of measuring the
experimental ARC and PRC could lead to slightly different out-
comes which is why analytical methods alone may not be sufficient
to estimate network synchronies.

In terms of the mechanistic explanation of the response to
stimulation, it is worth noting that the proposed mechanism—
delayed and accelerated cycles of oscillators—can be applied at
different levels of abstraction, depending on the specific neural
activity. While regular-spiking neurons may represent the sim-
plest interpretation of individual oscillators in some localized sig-
nals, other oscillatory drives could account for broader network
signals. Consequently, pinpointing the exact mechanism and
realization of these oscillators hinges on the scale of the measured
signal and may require recordings at multiple scales.

In summary, this study aimed to bridge the gap between theory
and experiments by validating relatively straightforward yet pow-
erful predictions. Such mechanistic understanding of the effects
of stimulation could complement model-free approaches like
machine learning techniques to design more effective stimulation
policies. The findings of this study highlight the significance of pin-
pointing the right time for stimulation, providing clinically trans-
latable insights for optimizing closed-loop strategies.

Data Availability
No new data were generated in this study. The experimental data
used here is available at http://dx.doi.org/10.5287/bodleian:
9omadD7Pp. The developed codes for mathematical modeling
and computational analysis would be made available on
https://github.com/Bogacz-Group upon publication.
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