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ABSTRACT: Background: Subthalamic nucleus (STN)
stimulation is an effective treatment for Parkinson’s disease
and induced local field potential (LFP) changes that have
been linked with clinical improvement. STN stimulation has
also been used in dystonia although the internal globus
pallidus is the standard target where theta power has been
suggested as a physiomarker for adaptive stimulation.
Objective: We aimed to explore if enhanced theta power
was also present in STN and if stimulation-induced spec-
tral changes that were previously reported for
Parkinson’s disease would occur in dystonia.
Methods: We recorded LFPs from 7 patients (12 hemi-
spheres) with isolated craniocervical dystonia whose elec-
trodes were placed such that inferior, middle, and superior
contacts covered STN, zona incerta, and thalamus.
Results: We did not observe prominent theta power in
STN at rest. STN stimulation induced similar spectral
changes in dystonia as in Parkinson’s disease, such as
broadband power suppression, evoked resonant neural

activity (ERNA), finely-tuned gamma oscillations, and an
increase in aperiodic exponents in STN-LFPs. Both
power suppression and ERNA localize to STN. Based on
this, single-pulse STN stimulation elicits evoked neural
activities with largest amplitudes in STN, which are
relayed to the zona incerta and thalamus with changing
characteristics as the distance from STN increases.
Conclusions: Our results show that STN stimulation–
induced spectral changes are a nondisease-specific response
to high-frequency stimulation, which can serve as placement
markers for STN. This broadens the scope of STN stimulation
and makes it an option for other disorders with excessive
oscillatory peaks in STN.© 2022 The Authors.Movement Dis-
orders published by Wiley Periodicals LLC on behalf of Inter-
national Parkinson andMovement Disorder Society.
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Introduction

Dystonia is a movement disorder characterised by
patterned torsional movements, abnormal postures,
and tremor.1 The prominent role of the basal ganglia-
sensorimotor network in the generation of dystonic
symptoms2 has led to the use of deep brain stimulation
(DBS) of the internal globus pallidus (GPi) in the treat-
ment of severe and disabling generalized and segmental
dystonia.3 Theta oscillations in GPi have been associ-
ated with dystonic symptoms and suggested as a poten-
tial signal for adaptive stimulation in dystonia.4,5

Whereas GPi remains the DBS target of choice, sub-
thalamic nucleus (STN) stimulation has been reported
to be effective in case series of people with focal or gen-
eralized dystonia6 and cervical dystonia (CD).7-9 The
rationale for using STN-DBS in dystonia is from evi-
dence that, besides its well-known effectiveness on
bradykinesia, rigidity, and tremor, this target is very
effective against painful OFF-period dystonia in people
with Parkinson’s disease (PD).10 Nevertheless, it is
unclear if enhanced theta is also present in the STN of
people with isolated dystonia.
STN stimulation in PD is associated with several

spectral changes in the STN local field potential (LFP),
including beta power suppression,11 evoked resonant
neural activity (ERNA),12,13 and finely-tuned gamma
(FTG) oscillations.14,15 These spectral fingerprints have
been linked with improvement in parkinsonian symp-
toms with DBS.16-20 It is unknown if these same spec-
tral features are present during STN stimulation of
people with isolated dystonia and if so how these relate
to lead placement and/or clinical symptoms. Filling this
knowledge gap would help understand the pathophysi-
ology of isolated dystonia, as well as the mechanism of
high-frequency STN stimulation.
Here, we had the unique opportunity to record sub-

thalamic LFPs from 7 patients, with idiopathic isolated
CD implanted with octopolar DBS leads spanning from
STN to the ventrolateral thalamus. We asked two main
questions. First, how are the power spectra recorded
from STN in our patients different from those reported
from GPi recordings in isolated dystonia and from STN
recordings in PD patients? Second, are the stimulation-
induced phenomena observed in PD patients also seen
in people with dystonia, and how do these relate to lead
placement?

Patients and Methods
Consent, Regulatory Approval, Patient

Selection, and Clinical Details
This protocol was approved by the Health Research

Authority UK and the National Research Ethics Service
Local Research Ethics Committee (IRAS: 46576). Seven

patients with isolated idiopathic dystonia were recruited
at St. George’s University Hospitals NHS Foundation
Trust, London, and received STN-thalamic dual targeted
DBS. Written informed consent was obtained in line
with the Declaration of the Principles of Helsinki. Five
patients were recorded bilaterally, resulting in 12 hemi-
spheres included in the study. Clinical details and the
tested hemispheres are summarized in Table 1.

Surgery and Lead Localization Assessment
The surgical targets were the ventrolateral thalamus

(nucleus ventralis intermedius [VIM] and nucleus
ventralis oralis posterior [VOP]), rostral Zona incerta
(rZI), and STN.21 The nondirectional Vercise Standard
Lead (model 2201, Boston Scientific Corporation,
Marlborough, MA, USA) with eight-ring contacts
(length, 30 cm; diameter, 1.3 mm; contact spacing,
0.5 mm; contact length, 1.5 mm; and contact span,
15.5 mm) was implanted such that inferior contacts
were placed in STN, superior contacts in ventrolateral
thalamus, and intervening contacts within or close to
the rZI. Electrodes were implanted and externalized,
and lead trajectories were reconstructed (Fig. 1A) as
described before.13

Stimulation and Data Recording
Data were recorded between four and seven days

postoperatively (Table 1), when electrode leads were
externalized and patients were off all anti-dystonic
medication. Monopolar high-frequency stimulation was
tested at the six middle contacts (C2–C7), as described
before.13 LFPs and EMGs from the affected neck mus-
cles were amplified and sampled at 4096 Hz using a
TMSi Saga (TMSi International, Oldenzaal, Nether-
lands), and custom-written software was developed
using the C programming language (Fig. 1B).

Experimental Paradigm
In patients 1–4, 6, and 7 (11 hemispheres), each of

the six middle contacts was continuously stimulated at
130 Hz with an increase in intensity from 0.5 to
4.5 mA or until side effect threshold was reached in
steps of 0.5 mA (see Fig. 3A). Each DBS block lasted
for 46.92 � 0.99 seconds (mean � standard error of
the mean) separated by resting periods of
27.50 � 0.59 seconds. In addition, different stimulation
frequencies (100, 130, 150, and 180 Hz for 2 minutes
each) were tested in patient 2 using the contact and cur-
rent that elicited the most prominent ERNA without
side effects. In patients 5 to 7, single-pulse stimulation
was subsequently applied at 2 mA (patient 5) or 4 mA
(patients 6 and 7) to all eight contact levels (25 pulses
to all contacts), and the remaining seven contacts were
recorded in unipolar mode. If not indicated differently,
a stimulation frequency of 130 Hz was used.
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Signal Processing
Preprocessing and Time Frequency
Decomposition

All data were analyzed using custom-written scripts
in MATLAB (version 2020b, The MathWorks Inc.,
Natick, MA, USA). Continuous LFP signals were high-
pass filtered at 1 Hz and notch-filtered at 50 Hz (sec-
ond-order IIR notch filter). Spectral amplitudes were
estimated between 1 and 500 Hz using the short-time

fast Fourier transform with a window length of 1 sec-
ond, 25% overlap of consecutive windows, and a Ham-
ming window yielding a frequency resolution of 1 Hz.

Power Changes and Aperiodic Exponents

Power spectral densities (PSDs) from 1 to 95 Hz were
calculated for LFPs recorded in bipolar montage and
each DBS setting (Fig. 2). We defined a 30-second
epoch before the first DBS block as baseline. Power of

FIG. 1. Recording setup and DBS (deep brain stimulation) dual targeting. (A) Lead reconstructions of all 12 electrodes used in this study. STN, sub-
thalamic nucleus; ZI, zona incerta; VIM, nucleus ventralis intermedius of the thalamus; VOP, nucleus ventralis oralis posterior of the thalamus. (B) Leads
were temporarily externalized, and local field potentials (LFPs) were recorded 4 to 7 days after implantation using a CE-marked amplifier system. The
six middle contact levels were successively stimulated (red), which allowed bipolar LFP recordings from the two adjacent contact levels. (C) Power
spectral densities (PSD, mean � standard error of the mean) from the C2 contact in STN (as determined by Lead-DBS, n = 11 hemispheres) and the
C6 contact in ventrolateral thalamus (n = 10) without stimulation. Clusters that are significantly different (cluster-based permutation test, P < 0.001)
between STN and thalamus are highlighted in amber. (CE, conformity with European health, saftey and environmental protection standards) [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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FIG. 2. Legend on next page.
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�50 Hz artifact of mains interference was removed
(48–52 Hz), and the gap in the PSD was linearly inter-
polated. PSDs of both the baseline and all DBS blocks
were normalized to the mean power between 1 and
95 Hz of the baseline PSD. Percentage change in the
power relative to the baseline for three frequency
ranges was calculated: beta (13–35 Hz), low gamma
(36–48 Hz), and high gamma (52–80 Hz).
Aperiodic exponents were isolated from the PSD

using the open-source FoooF algorithm (version
1.0.0).22 Settings for the algorithm were set as follows:
peak width limits: 2–12; maximum number of peaks:
infinite; minimum peak height: 0; peak threshold: 2;
and aperiodic mode: fixed. Power spectra were parame-
terized across the frequency range of 5 to 50 Hz. The
lower bound was selected to avoid the impact of low-
frequency oscillations, and the upper bound was
selected to avoid the impact of spectral plateaus at high
DBS intensity.23 The same FoooF settings were used to
identify meaningful changes in the aperiodic exponent
of STN-LFPs with dopaminergic medication and high-
frequency stimulation.24

ERNA Analysis

The presence of the ERNA was assessed in two ways.
In the power spectrum, it was defined as a high-
amplitude and high-frequency activity that starts at
�350 Hz and decreases in frequency and amplitude
with sustained stimulation13 (see contact C2, Fig. 3A).
In the time series waveform, the ERNA was defined as
a high-amplitude evoked response between two stimu-
lation pulses (Fig. 3B), which resonates as DBS is
switched off or paused.13

To map ERNA amplitudes onto subcortical space,
stimulation contact positions in MNI (Montreal Neuro-
logical Institute) space (MNI 152 2009b NLIN ASYM)
were extracted from the Lead-DBS pipeline. To calcu-
late ERNA amplitudes, the inter-pulse interval was line-
arly detrended, low-pass filtered at 700 Hz, and
upsampled by factor 10 using a spline interpolation
(Fig. 3B). ERNA amplitudes following the first 10 pulses
at 2 mA were averaged because this was the highest
intensity that was tested across all hemispheres. Aver-
age ERNA amplitudes of the first 10 pulses were
assigned to their respective stimulation contacts in MNI

space and linearly interpolated in three-dimensional
space (Fig. 3C). Only contacts with a clear ERNA peak
were included in the analysis, which resulted in 21 con-
tacts shown in Figure 3C. Contacts from the right STN
were mirrored to the left and are presented in one com-
bined image.

FTG

The post-DBS FTG was identified after each stimula-
tion block at increasing intensity (see Fig. 3D), analyzed
as described before,25 and baseline normalized to the
mean amplitude of all power estimates between 1 and
95 Hz of a 30-second period before the first stimulation
block.

Evoked Neural Activity after Single-Pulse
Stimulation

In patients 5 to 7, we studied evoked neural activities
(ENAs) after single-pulse stimulation with an average
inter-pulse interval of 3.97 � 0.04 seconds. To quantify
ENAs, LFPs were aligned to individual pulses and aver-
aged. We extracted ENA amplitudes and latencies after
every DBS pulse, as shown in Figure 3B.

Statistics
Statistical analyses were conducted using custom-

written scripts in MATLAB. Linear mixed-effect models
were used to assess the effect of stimulation contacts on
ENA parameters and aperiodic exponents as described
before.13 To identify clusters of significant power sup-
pression during DBS, we used nonparametric permuta-
tion tests with 1000 permutations. Only clusters with
P < 0.001 are highlighted in Figures 1C and 2A.

Results
Subthalamic and Thalamic Power Spectral

Densities in Dystonia
We recorded blocks of 37.88 � 4.86 seconds at rest

without any stimulation from 10 (thalamus) and
11 (STN) hemispheres and did not observe prominent
peaks in the theta (4–8 Hz) or beta (13–35 Hz) range in
the power spectra of both STN and thalamus (Fig. 1C).
There was no correlation between muscle activity

FIG. 2. DBS (deep brain stimulation)-induced power suppression in STN-LFPs (subthalamic nucleus-local field potential) of dystonic patients. (A) When
stimulating contacts C2 to C7 at 2 mA and recording from the adjacent contact pair, average power (mean � standard error of the mean) in the beta
(24–35 Hz) and gamma (36–80 Hz) range was suppressed compared to baseline in the most inferior contact only (in STN). Significant clusters are
highlighted in green (cluster-based permutation test, P < 0.001). (B) Beta (13–35 Hz), low-gamma (36–48 Hz), and high-gamma (51–80 Hz) power sup-
pression is strongest in the dorsolateral part of STN (n = 62 contacts). (C) Average power between �20 and �80 Hz is increasingly suppressed in STN
with increasing DBS intensity. Note the artifacts of stimulation at 4.5 mA manifesting as prominent peaks in different frequency bands (at �30, 60, 70,
and 80 Hz). (D) No power suppression with increasing DBS intensity when VIM is stimulated. (E) Aperiodic exponents of the power spectrum increase
(1/F slope on a log–log scale becomes steeper) in STN-LFPs with increasing DBS intensity (LME: estimate = 0.006, t = 8.15, P < 0.001). (F) Aperiodic
exponents of VIM-LFPs increase only slightly with increasing DBS intensity (LME: estimate = 0.002, t = 2.30, P = 0.024) (Hem: hemisphere). [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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FIG. 3. Evoked resonant neural activity (ERNA) and FTG (finely-tuned gamma) can be elicited by STN-DBS (subthalamic nucleus-deep brain stimulation)
in dystonia. (A) Stimulating contacts within or close to STN (C2) elicits ERNA recorded from adjacent contacts (C1–C3) with increasing DBS intensity
(example spectrograms shown for patient 1). Note that higher DBS intensity is required to elicit ERNA in contact levels that are farther from a sweet
spot in STN (DBS to C3 and recording from C2 to C4). Stimulation to any of the more superior contacts (in thalamus) did not elicit ERNA (C4–C7). (B)
Schematic of how ERNA latency and amplitude were calculated based on the time series waveform. The inter-pulse interval was linearly detrended,
low-pass filtered at 700 Hz, and upsampled using a spline interpolation. (C) Average ERNA amplitudes of the first 10 pulses at 2-mA stimulation are
largest within dorsolateral STN (n = 21; contacts from the right hemisphere were mirrored to the left, individual contact positions were interpolated in
3D as in Horn et al46) (S: superior, I: inferior, A: anterior, P: posterior, M: medial, L: lateral). The three subplots show the left STN viewed from lateral,
anterior, and superior, respectively. (D) Spectrogram with blocks of increasing DBS intensity (3–4.5 mA). DBS-induced FTG (label 1) occurs after the
respective DBS blocks (3 of 12 hemispheres) when patients do not exhibit prominent dystonia due to the stun effect. [Color figure can be viewed at
wileyonlinelibrary.com]
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recorded from the dystonic muscles and LFP power of
any frequency range in either STN or thalamus at rest.
When comparing power spectra recorded from within
or close to STN (recorded from the C2 contact) and
thalamus (C6), amplitudes were larger in STN from
31 to 55 Hz and vice versa from 75 to 95 Hz (cluster-
based permutation test, P < 0.001, Fig. 1C).

DBS Induces a Broad Power Suppression and
increases the aperiodic exponent in the STN

LFPs of Dystonic Patients
Continuous 130-Hz STN-DBS (delivered to the C2

level) at 2 mA induced power suppression over a broad
frequency range (25–80 Hz, P < 0.001, recorded from
the adjacent contacts), whereas stimulation to any of
the more superior contacts in rZI and thalamus did not
lead to significant power changes (in adjacent contacts,
Fig. 2A). Power suppression of the beta, low-gamma,
and high-gamma range was strongest in the dorsolat-
eral part of STN and decreased in all directions (62 con-
tacts from 11 hemispheres included, Fig. 2B).
Consistent with this, power suppression in STN was
more pronounced with increasing DBS intensity
(Fig. 2C), whereas increasing DBS currents in
VIM/VOP thalamus did not affect the PSD (Fig. 2D).
Recently, the aperiodic exponent (1/F slope of the

PSD) was suggested as a marker for E/I balance.24,26,27

We extracted the aperiodic exponent between 5 and
50 Hz to avoid a spectral plateau at �50 Hz and found
that aperiodic exponents in STN increase with increas-
ing DBS currents (Linear mixed-effect model (LME):
estimate = 0.006, t = 8.15, P < 0.001, n = 11 hemi-
spheres), consistent with the hypothesis that high-
frequency stimulation inhibits STN (Fig. 2E). This pro-
cess appears to be nonlinear and to flatten out with fur-
ther increasing currents. In contrast, aperiodic
exponents in VIM-LFPs were less affected by increasing
intensity of VIM-DBS (LME: estimate = 0.002,
t = 2.30, P = 0.024, n = 10, Fig. 2F).

ERNA and Finely-Tuned Gamma Can Be
Elicited by STN-DBS in Dystonia

When stimulation was delivered at 130 Hz to con-
tacts within or close to the STN (C2), we observed
ERNA recorded from neighboring contacts progres-
sively with increasing DBS intensity in 11 of 12 tested
hemispheres (Fig. 3A, lowest panel). When the next
higher contact (C3) was stimulated, ERNA was still
recorded from adjacent contacts, however only at
much higher DBS intensity (eg, 4.5 mA for patient
1, left hemisphere). Stimulation to any of the superior
contacts in thalamus did not elicit ERNA recorded
from surrounding contacts. The observed ERNA
shows similar characteristics as reported before in PD:
it starts as a high-frequency oscillation at �350 Hz

and gradually decreases before reaching a steady state
after 1 minute.13

ERNA has previously been suggested as a placement
marker for STN. To support this, average ERNA
amplitudes of the first 10 pulses of 130-Hz DBS (2 mA)
were largest in dorsolateral STN (Fig. 3C) and
decreased in all directions with increasing distance from
that sweet spot (ERNA from 21 contacts and 11 hemi-
spheres was included).
Levodopa-induced FTG was suggested as a bio-

marker for dyskinesia in PD.28 Recently, we reported
that FTG can also be induced in STN by DBS alone
without dopaminergic medication or dyskinesia in PD
patients.25 Now, we observed the same phenomenon in
two dystonic patients (Fig. 3D). Unlike previous reports
of FTG in dystonia,29,30 this FTG activity is de-novo
DBS-induced and not present at rest before stimulation.
In these patients, DBS-induced FTG appears when stim-
ulation is switched OFF and decreases in frequency as
reported before.25 We observe DBS-induced FTG in
2 of 7 patients (3 of 12 hemispheres), a similar propor-
tion compared to what was reported in PD.25 DBS-
induced FTG did not correlate with dystonic symptoms
or the clinical effect of STN-DBS.

Single-Pulse Stimulation Induces ENA, and Its
Parameters Change with Distance from

the STN
To test if and to what extent STN-DBS will affect

neurons in rZI and thalamus, we applied repetitive
single-pulse stimulation in patients 5–7 (Table 1) to all
eight contact levels and recorded LFPs from the
remaining seven contacts in unipolar mode. When
aligning and averaging the evoked neural
activity (ENA) over successive DBS pulses, we observed
a clear ENA peak in all contacts when stimulating the
two most inferior contact levels in or close to STN
(C1 and C2, Fig. 4A). However, the pattern of the
ENA changed across different recording contacts. In
inferior contacts within or close to STN (C1 + C2),
there was an “oscillatory” pattern comprising a peak
and a trough. In the remaining contacts (C3–C8), we
observed only a peak whose latency increased with dis-
tance from STN (LME: estimate = 0.24, t = 24.92,
P < 0.001). This process appeared to be nonlinear with
the sharpest increase between C3 and C4, which mir-
rors the transition from rZI to thalamus (Fig. 4B). Fur-
thermore, ENA amplitudes changed as a function of
distance from STN. When the most inferior contact in
STN (C1) was stimulated, ENA amplitudes (calculated
as shown in Fig. 3B) were largest in C2 and decreased
in C3 (LME: estimate = �71.23, t = �44.72,
P < 0.001) before increasing again up to the C5 con-
tact, which is placed in the thalamus (LME: esti-
mate = 6.10, t = 9.18, P < 0.001) (Fig. 4B). ENA
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FIG. 4. Single-pulse STN (subthalamic nucleus) stimulation elicits evoked neural activity (ENA). (A) Average ENA responses (mean � standard error of the mean;
n= 23 when Stim to C1 and n= 25 for all other columns) after single DBS (deep brain stimulation) pulses at 2 mA (ENA peaks are highlighted with red arrowheads,
data from patient 5 left lead). (B–F) When stimulating a contact in STN (C1 in B, C2 in D and E, C3 in C and F, as determined by Lead-DBS), ENA amplitudes were
largest in the neighboring contacts (in C–F: superior contact > inferior contact), decreased outside of STN, and increased again in the thalamus. ENA latencies were
shortest in contacts adjacent to stimulation (B) or decreased initially with increasing distance (C–F). Latencies then increased between C3 and C4 (B), C5 and C6
(C, D, and F), and C4 and C5 (E), a jump that mirrors the transition from zona incerta to thalamus (P-values of linear mixed-effect models are shown). [Color figure
can be viewed at wileyonlinelibrary.com]
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amplitudes decreased again in any of the more superior
contacts (C6–C8) (LME: estimate = �7.63,
t = �24.72, P < 0.001). Changing DBS pulse polarity
did not reverse the polarity of the ENA after each pulse.
Single-pulse stimulation in patients 6 and 7 had similar
effects. In these patients, contact C2 or C3 was placed
in STN (as determined by lead reconstructions, see
Fig. 4C–F). Again, ENA amplitudes were largest in con-
tacts adjacent to stimulation (higher amplitudes in the
superior neighbor), then decreased in the middle con-
tacts (C4–C6), and increased again in contacts placed
in the thalamus (C7 and C8). ENA latencies were low-
est in the middle contact levels (C4 and C5) and rapidly
increased between C5 and C6 (Fig. 4C, D, and F) or
between C4 and C5 (Fig. 4E), a jump that mirrors the
transition from rZI to thalamus.

Discussion

Here, we report for the first time stimulation-induced
spectral changes in STN activity in people with isolated
dystonia. We did not observe prominent theta peaks at
rest as has previously been reported in recordings from
GPi. However, we found a range of robust stimulation-
induced changes in our dystonia cohort that have previ-
ously been reported only in PD, such as broadband
power suppression, ERNA, and DBS-induced FTG,
which are specific to STN and not observed in the thal-
amus. ERNA/ENA amplitudes and DBS-induced broad-
band suppression were largest in STN, confirming their
usefulness as markers for lead placement in STN and
contact selection in general. Finally, we showed that the
aperiodic exponent of STN-LFPs changes with increas-
ing DBS intensity such that it is reconcilable with the
E/I hypothesis. Overall, these findings point to potential
differences in network dynamics in dystonia between
GPi and STN, which may be relevant to future work
studying correlations of spectral features with clinical
symptoms for adaptive stimulation in dystonia. Fur-
thermore, STN-DBS-induced spectral changes reported
here may reflect a transdiagnostic pattern of how STN-
LFPs respond to high-frequency stimulation. Under-
standing the origin and temporal dynamics of these
changes may open a door to understanding mechanisms
underlying high-frequency STN stimulation, in general,
and therefore its potential application to treatment of
other neurological and psychiatric disorders.

Spectral Features of the Dystonic STN and
Thalamus

Theta oscillations in GPi4,5,31-33 and STN34 have
been associated with dystonic symptoms and, therefore,
suggested as a potential signal for adaptive stimulation
in dystonia. Here, we did not observe a prominent peak
in the theta frequency band of the STN-LFP at rest,

which differs from the studies mentioned earlier in GPi
and STN (Fig. 1C). Despite the postoperative stun effect
as a potential confounder in this study, our results are
confirmed by a previous report that did not find
increased theta power in the STN of dystonia patients,
which could be due to differences in input between the
GPi and STN.35 Another recent study indicates that
dystonia-related spectral changes in the STN may be
more prominent during voluntary movements; how-
ever, this study investigated dystonia as a motor sign of
PD instead of isolated dystonia.36

Contrary to the prominent beta peaks in STN that
are a hallmark of PD,37,38 we did not observe a clear
beta peak in the STN of dystonic patients (Fig. 1C),
despite other studies showing beta activity in the STN
of dystonic patients at rest35 and subthalamic beta
peaks in patients with obsessive compulsive disorder.39

However, we observed larger beta power in STN com-
pared to the thalamus. Two previous studies reported
higher beta peaks in the GPi-LFP of PD compared to
dystonia.33,40 These disease-specific spectral differences
may be explained by the widespread neurodegeneration
in PD, which affects basal ganglia neurophysiology and
cements excessive beta synchronization within the basal
ganglia as a near-pathognomonic marker of bradykinesia
and rigidity in PD.

DBS-Induced Power Suppression, ERNA, and
DBS-Induced FTG Are Not Specific to PD

Stimulation-induced changes in STN-LFPs in the beta
and gamma range are well studied in PD.13,16 What is
not clear is if these changes are specific to PD or com-
mon features of how the STN responds to high-
frequency stimulation. Our results support the latter.
From the broad (25–80 Hz) subthalamic DBS-induced
power suppression (Fig. 2A), we can infer that exces-
sive, pathological synchronization in STN anywhere in
this broad spectrum in a particular disease could be
flattened by high-frequency STN stimulation. Along
with our finding of increasing aperiodic exponents as a
function of DBS intensity, we could infer that high-
frequency STN-DBS will overall have an inhibitory
effect on STN neuronal activity. This might broaden
the scope of DBS and make STN-DBS a viable option
for other disorders with excessive oscillatory peaks in
the STN power spectrum.
As in PD, we also observed ERNA in the STN of dys-

tonic patients. Several attempts have been undertaken
to find clinical correlates of the ERNA in PD.13,18,19,41

Although its origin is unclear, it is assumed that the
ERNA originates from the effect of STN-DBS on recip-
rocal STN–GPe (external globus pallidus) connec-
tions.18 Here, we provide evidence that the ERNA is
not reliant on PD-specific changes but can be elicited in
the brains of dystonic patients without widespread
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neurodegeneration. However, it is still possible that the
ERNA is modulated in the dopamine-deficient brain
similar to beta activity.
Levodopa-induced FTG has previously been recorded

in PD and related with the presence of dyskinesia.28

This relation was recently challenged by a study show-
ing that DBS-induced FTG can be observed in PD even
without dyskinesia.15,25 Previously, spontaneous FTG
has also been reported in dystonic patients in both cor-
tical and thalamic LFPs, when it was related with
hyperkinetic movements.29,30 In our cohort, we
recorded de-novo DBS-induced FTG in STN, which did
not vary relative to dystonic postures but appeared reli-
ably after DBS was stopped. This challenges the direct
relation between DBS-induced FTG and both Parkinso-
nian and dystonic symptoms, and it may rather present
a signal of effective STN stimulation,15 be it epiphe-
nomenal or not.

ERNA/ENA Amplitudes and DBS-Induced
Power Suppression Are Largest within STN
Both ERNA12,42 and beta power43,44 have been

suggested as placement markers during surgery and as
predictors for the best clinical contact. Our findings of
the largest ERNA amplitudes and strongest beta/
gamma power suppression in the dorsolateral part of
STN (Figs. 2B and 3C) are in line with the aforemen-
tioned studies. Importantly, we show that amplitudes
and latencies of ENAs after single DBS pulses are also
localized to STN (Fig. 4). It is, therefore, not necessary
to apply longer bursts of stimulation. Single pulses,
which can be applied in a fraction of a second, may be
sufficient to optimize lead placement and accelerate
contact selection. In general, ENA and ERNA represent
the same activity, but ERNA has the added resonant
effect caused by repetitive stimulation pulses at an
inter-pulse interval (frequency) that enhances the ampli-
tude and duration of the ENA (positive interference).
Moreover, ENA amplitudes and latencies do not
decrease linearly as a function of distance on stimula-
tion of STN (Fig. 4B). ENA amplitudes are largest in
STN, second largest in contacts placed in the ventrolat-
eral thalamus, and lower in between (see Fig. 4B,E).
This possibly indicates the thalamic region that receives
most inputs from the basal ganglia output structures.
Overall, our results confirm the utility of ERNA/ENA

amplitudes and beta/gamma power suppression for
both lead placement and contact selection but challenge
the specificity of these spectral changes for PD.

Limitations
Our results may have been confounded by postopera-

tive stun effect, which obscured dystonic symptoms and
is known to lower beta activity in PD.45 Furthermore,
we have a relatively low sample size of 7 dystonic

patients (12 hemispheres). This is mostly due to the lim-
ited number of externalized DBS patients, and external-
ized dystonic patients with leads in STN are even rarer.
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