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(57) Abstract: Systems and methods for generating stimulation signals for brain or nerve stimulation are disclosed. In one arrangement,
a signal generation unit generates a stimulation signal and transmits the stimulation signal to a stimulation unit. The stimulation unit
applies the stimulation to a biological system. The stimulation signal is defined by at least one stimulation parameter. A data receiving
unit receives time series biomarker data comprising measurement samples representing one or more biomarkers indicative of a condition
of the biological system that is affected by applied stimulation based on the stimulation signal. A controller controls generation of the
stimulation signal based on the received biomarker data. The controller uses a model of the biological system to estimate an optimal
value of the at least one stimulation parameter using the biomarker data. The model defines strengths of contribution of measurement
samples to the estimate based on the times at which the measurement samples were obtained.
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SYSTEMS AND METHODS FOR GENERATING A STIMULATION SIGNAL FOR
BRAIN OR NERVE STIMULATION AND FOR PERFORMING BRAIN OR
NERVE STIMULATION

The present disclosure relates to generating stimulation signals for brain or nerve
stimulation.

Over the last four decades neuromodulation has been adopted as an adjunct therapy
for a variety of treatment resistant neurological and psychiatric disorders, whereby
electrical or magnetic stimulation of certain brain regions is used to reduce disease
symptoms. Invasive and non-invasive stimulation-based therapies (e.g., Deep Brain
Stimulation (DBS), Transcranial Magnetic Stimulation (TMS), etc.) have so far relied on
clinical expertise to empirically select patient specific stimulation parameters during
clinical appointments. Due to the potentially very high dimensionality of stimulation
parameterization, manual identification of effective therapy parameters is a difficult and
time-consuming process. Electrode contacts and stimulation parameters (e.g., amplitude
and frequency) must be tuned to provide optimal therapeutic outcomes. Therapy
performance is guided by both symptom severity and side-effects, where an ideal
parameter set is chosen as one that minimizes symptoms whilst also avoiding stimulation
induced side-effects. In recent years, there also has been an increasing acknowledgement
of the limitations of titrating therapies based on the limited snapshot of disease
characteristics available from daytime clinical assessments.

Optimization and machine-learning techniques have received considerable interest
for more rapid and efficient identification of patient-specific stimulation parameters. These
techniques often focus on the sequential evaluation of samples from the stimulation
parameter space to characterize and guide future exploration of the parameter space or to
identify an optimal parameter set for therapy. Implementation of these approaches in
practice requires objective quantification of each sample selected from the parameter space
in terms of its effect on patient’s symptom severity. Biomarkers (i.e., signals that correlate
with specific states of health or disease) can be derived from data recorded invasively or
non-invasively and then utilized to assess the relationship between therapy settings and

performance. A variety of such signals have been explored in the literature for a range of
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neurological and psychiatric disorders, but selection of optimal therapy settings remains
challenging.

It is an object of the present disclosure to improve generation of stimulation signals,
by supporting selection of stimulation parameters that provide improved reduction of
patient symptoms and/or side-effects induced due to stimulation.

In neurodegenerative disorders such as Parkinson’s disease, therapy efficacy is lost
over time due to disease progression. To counter act this, either the medication dose is
increased or for those patients treated with deep brain stimulation the stimulation
amplitude is increased to capture a larger portion of the target nucleus. Other variations
which influence stimulation efficacy include concurrent medication intake, which in a
subset of Parkinson’s disease patients may induce dyskinesias when used on its own or in
conjunction with deep brain stimulation. Beyond disease progression and medication
intake, symptom variations over the course of the day, which may reflect circadian
dependencies (e.g., Parkinson’s disease, Essential Tremor, etc), could also influence
therapy efficacy.

Brain stimulation-based therapies currently take a time-invariant approach to
stimulation parametrisation. Optimal stimulation settings are chosen during day-time
clinical visits through a process of trial and error and these settings remain the same until
the next clinic visit. Adaptive brain stimulation approaches which switch stimulation ON
when symptom severity or a representative neural biomarker exceeds a threshold, also
assume that the subject specific thresholds do not change over time. Other adaptive
stimulation approaches, such as phase-specific stimulation, also do not consider dynamic
variations in effective stimulation settings and use the same stimulation phase. However,
taking a time invariant approach to stimulation parametrisation may either over stimulate
or under stimulate patients, resulting in stimulation induced side-effects and sub-optimal
symptom management, respectively.

Although a variety of optimization approaches have been explored for
neuromodulation therapy in both clinical and computational settings, a limitation of the
approaches suggested to date is that the therapy parameter spaces are assumed to be time-
invariant (i.e., they are fixed). In practice, patient’s symptom severity can vary across

multiple timescales due to factors such as changes over several hours arising due to

2



10

15

20

25

30

WO 2025/022112 PCT/GB2024/051935

medication intake or the sleep/wake circadian rhythm, or fluctuations at a much longer
timescale due to disease progression. For this reason, optimization approaches which focus
on the identification of a time-invariant, or stationary, optimal parameter set may provide
suboptimal therapy as patient symptoms, or the mapping between stimulation settings and
performance, drifts in response to these temporal variations over time.

Arrangements of the present disclosure provide improved performance by
addressing these limitations. A time varying controller is provided for the delivery of brain
stimulation that can maintain optimal stimulation performance in the face of shifting
physiological demands that might be expected from the factors introduced above.

According to an aspect of the invention, there is provided a system for generating a
stimulation signal for brain or nerve stimulation, comprising: a signal generation unit
configured to generate a stimulation signal for performing brain or nerve stimulation on a
biological system and to transmit the stimulation signal to a stimulation unit configured to
apply the stimulation to the biological system, wherein the stimulation signal is defined by
at least one stimulation parameter; a data receiving unit configured to receive time series
biomarker data comprising measurement samples obtained by measurements performed on
the biological system at different respective times, the biomarker data representing one or
more biomarkers indicative of a condition of the biological system that is affected by brain
or nerve stimulation applied by the stimulation unit based on the stimulation signal; and a
controller configured to control generation of the stimulation signal by the signal
generation unit based on the received biomarker data, wherein: the controller is configured
to use a model of the biological system to estimate an optimal value of the at least one
stimulation parameter using the biomarker data, wherein the model is configured to define
strengths of contribution of measurement samples to the estimate based on the times at
which the measurement samples were obtained.

Configuring the model to define the strengths of contribution of samples to the
estimate based on the times when the samples were obtained has been shown to improve
how stimulation is parametrised at a later time, thereby improving the process of
generating stimulation signals. Stimulation signals can be generated that take account of
variations in the state of the biological system over time, for example allowing a medical

treatment performed by the stimulation signals to remain effective over time. An approach
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to therapy optimisation is thus enabled that can consider variations in therapy efficacy over
time, due to factors such as medication intake, circadian rhythms and disease progression.
By learning these variations, the time-varying controller can sustain therapy efficacy in
contrast to time-invariant approaches which show degraded performance.

In an embodiment, the model comprises a forgetting component configured to
progressively decrease strengths of contribution of measurement samples as a function of
increasing age of the measurement samples. Use of such a forgetting component is
demonstrated to provide effective tracking of changes in the biological system over time,
particularly where a strength of the forgetting component (represented for example by a
forgetting factor €) is selected carefully to provide an appropriate balance between
considering sufficient samples to gather information and lowering the strength of
contribution of older samples.

In an embodiment, the model further comprises a structured temporal component
comprising one or more periodic components. The inventors have found that combining a
forgetting component and one or more periodic components provides particularly robust
tracking of changes in the biological system over time.

As described above, while use of a forgetting component alone can provide good
performance when the strength of the forgetting component is carefully selected,
combining the forgetting component with a periodic component increases the range of
strengths of the forgetting component for which good performance is achieved, thereby
increasing ease of setup, robustness, and performance stability. Requirements for accurate
selection of the strength of the forgetting component are relaxed. Good performance can be
achieved, for example, even when the strength of the forgetting component is too low for
the forgetting component to provide good performance when used on its own (see Figures
13 and 14 and accompanying discussion below).

Furthermore, as demonstrated and described below with reference to Figure 14, the
inventors have additionally found that combining the forgetting component and the one or
more periodic components provides performance that is more robust to variations in the
period (or periods) of the one or more periodic components.

In an embodiment, the structured temporal component further comprises an

aperiodic component. The aperiodic component may comprise a progressive drift. The
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progressive drift may correspond to progression of a disease state of the biological system.
Providing such an aperiodic component may improve the model’s performance in tracking
aperiodic changes in the state of the biological system (which may be represented by
aperiodic changes in the shape of the objective function in cases where the model
comprises a Gaussian process).

Embodiments of the disclosure will now be further described, merely by way of
example, with reference to the accompanying drawings.

Figure 1 depicts a system for generating a stimulation signal and a stimulation unit
for applying stimulation.

Figure 2 depicts an example framework for methods of generating a stimulation
signal and performing stimulation using the signal.

Figures 3 and 4 depicts parameter space exploration (Figure 3) in comparison to
exploitation (Figure 4) for a sequential selection of samples during Bayesian Optimization.
The top panels illustrate the true (dotted black line) and estimated (solid line) shape of the
underlying objective function. The confidence bounds for the estimated shape of the
objective function are highlighted in grey while the associated samples used for the
estimation are represented as circles. Selection of the next parameter value to be tested is
subsequently determined as the minimum of an acquisition function calculated from the
mean and confidence bounds of the current estimated shape of the objective function. The
bottom panels illustrate a corresponding lower confidence bound acquisition function,
where the value k determines whether the algorithm prioritizes exploring regions of the
parameter space where there is greater uncertainty (exploration) or prioritizes selecting
regions of the parameter space where there is less uncertainty (exploitation). The location
of the minimum value in the acquisition function (circle) is subsequently selected as the
next parameter to be tested by the Bayesian Optimization.

Figures 5 to 7 depict time-varying objective functions and their respective
covariance functions. Various explored drifts are illustrated for a periodic objective
function with respect to a parameter of interest (phase trigger). The objective function is
allowed to drift according to three cases: gradual (Figure 5(a), periodic (Figure 5(b)), and
the superposition of the two (Figure 5(c)). At each time-step in the optimisation, samples

from the objective function are weighed by their respective temporal covariance function
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(depicted in Figures 6(a)-(c)). This resultant weighing is illustrated in Figures 7(a)-(c) in
the “colour” (represented in greyscale) gradient of the drifting objective function, with
brighter colours (lighter greys) representing a stronger sample weight.

Figure 8 depicts a Kuramoto deep brain stimulation (DBS) model response to
phase-locked stimulation. Individual oscillators in the population are represented as small
solid circles distributed around the unit circle where the position of each oscillator
represents its phase value at the associated timestep. The population order parameter at
different simulation timesteps is illustrated in Figure 8(b). In the top row of Figure 8(b) the
radial line within the unit circle illustrates the magnitude of the order parameter, p, and the
mean phase coherence of the population, 1. The radial line points in the direction of ¢ and
the length of the line represents the synchronization level of the population p (a short line
represents low synchrony, and a long line represents high synchrony). Figure 8(a)
represents the distribution of oscillators prior to stimulation when the model is at its steady
state behaviour. In Figure 8(b) the rows illustrate the change in population synchrony in
response to stimulation at a specific phase value, Yigrger. Figure 8(c) summarizes the
change in population synchrony, 4p, as a function of phase-locked stimulation applied
between Yigrger = (—m, 1) radians. Ap < 0 corresponded to phase-locked stimulation at
the specified Y14 ger values desynchronizing the population, while 4p > 0 corresponded to
the phase-locked stimulation increasing population synchrony.

Figure 9 is an illustration of dynamic variation of a population ARC and PRC. The
shape of the initial population ARC corresponded to a PRC of Z (Hj) = —sin(6;) at the
first optimization step (t = 1). By incrementally adding an offset value, 46, to the PRF, the
shape of the ARC and location of the optimum phase value for phase-locked stimulation,
Y*, were gradually varied over the optimization process.

Figures 10(a)-(e) depict TV-BayesOpt algorithm performance for tracking a
gradual drift in the optimal stimulation phase for phase-locked stimulation, Y *. Figure
10(a) illustrates the tracking performance of the TV-BayesOpt algorithm (upper series of
dots) at locating the true optimal phase value (lower series of dots) for population
desynchronization. Figure 10(b) illustrates the associated average regret for the TV-

BayesOpt algorithm (upper line) at tracking the true optimum phase value in comparison to



10

15

20

25

30

WO 2025/022112 PCT/GB2024/051935

when static BayesOpt was implemented alone (lower line). Figures 10(c)-(e) illustrate the
true location of the optimal stimulation phase (black dot), the minimum predicted by the
TV-BayesOpt algorithm (black circle and cross) and the shape of the GPR predicted by the
TV-BayesOpt algorithm at 0.01-, 17.62- and 20.00-day time points respectively.

Figures 11(a)-(e) depict TV-BayesOpt algorithm performance for tracking a
periodic drift in the optimal stimulation phase for phase-locked stimulation, 1*. Figure
11(a) illustrates the tracking performance of the TV-BayesOpt algorithm (dark grey dots)
at locating the true optimal phase value (black dots) for population desynchronization. The
dark grey dots and the black dots overlie each other closely. Figure 11(b) illustrates the
associated average regret for the TV-BayesOpt algorithm (upper line) at tracking the true
optimum phase value in comparison to when static BayesOpt was implemented alone
(lower line). Figures 11(c)-(e) illustrate the true location of the optimal stimulation phase
(black dot), the minimum predicted by the TV-BayesOpt algorithm (black circle and cross)
and the shape of the GPR predicted by the TV-BayesOpt algorithm at 0.01-, 17.62- and
20.00-day time points respectively.

Figures 12(a)-(e) depict TV-BayesOpt algorithm performance for tracking a
gradual and periodic drift in the optimal stimulation phase for phase-locked stimulation,
Y*. Figure 12(a) illustrates the tracking performance of the TV-BayesOpt algorithm (dark
grey dots) at locating the true optimal phase value (black dots) for population
desynchronization. The dark grey dots and the black dots overlie each other closely. Figure
12(b) illustrates the associated average regret for the TV-BayesOpt algorithm (upper line)
at tracking the true optimum phase value in comparison to when static BayesOpt was
implemented alone (lower line). Figures 12(c)-(e) illustrate the true location of the optimal
stimulation phase (black dot), the minimum predicted by the TV-BayesOpt algorithm
(black circle and cross) and the shape of the GPR predicted by the TV-BayesOpt algorithm
at 0.01-, 17.62- and 20.00-day time points respectively.

Figure 13 depicts a sensitivity analysis of the TV-BayesOpt algorithm with a
forgetting (upper line) or a forgetting-periodic (lower line) covariance function for a range
of € values. Incorporation of prior knowledge of the temporal variation in the objective
function optimum value (lower line) resulted in improved TV-BayesOpt algorithm

performance than implementing a forgetting covariance function (upper line) alone. Best
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algorithm performance was observed for an € value of 0.22; above this value the algorithm
begins to forget previous samples too quickly to accurately track the optimal value in the
objective function.

Figure 14 depicts a sensitivity analysis of the TV-BayesOpt algorithm performance
at tracking a periodic temporal drift when the period of the drift is offset from the
covariance function period anticipated by the TV-BayesOpt algorithm. The performance of
a scheduler (uppermost line), the TV-BayesOpt with a periodic temporal covariance
function (middle line line) and the TV-BayesOpt with a periodic and smooth forgetting
covariance algorithm (lowermost line) were estimated by calculating the AUC value for
the associated regret plot for each implementation at different offset in the true temporal
period.

Methods of the present disclosure are computer-implemented. Each step of the
disclosed methods may therefore be performed by a computer. The computer may
comprise various combinations of computer hardware, including for example CPUs, RAM,
SSDs, motherboards, network connections, firmware, software, and/or other elements
known in the art that allow the computer hardware to perform the required computing
operations. The required computing operations may be defined by one or more computer
programs. The one or more computer programs may be provided in the form of media,
optionally non-transitory media, storing computer readable instructions. When the
computer readable instructions are read by the computer, the computer performs the
required method steps. The computer may consist of a self-contained unit, such as a
general-purpose desktop computer, laptop, tablet, mobile telephone, smart device, etc.
Alternatively, the computer may consist of a distributed computing system having plural
different computers connected to each other via a network such as the internet or an
intranet.

As exemplified schematically in Figure 1, the present disclosure relates to a system
2 for generating a stimulation signal for brain or nerve stimulation. The system 2 may
perform all or part of a method according to the framework depicted in Figure 2. The
method comprises receiving biomarker data from a biomarker data source in step S1,

generating a stimulation signal in step S2, and applying the stimulation signal in step S3.
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Measurements made during the applying of the stimulation signal in step S3 may lead to
new data being added to the biomarker data in the biomarker data source.

The system 2 comprises a signal generation unit 4. The signal generation unit 4
generates a stimulation signal 5 (step S2) for performing brain or nerve stimulation on a
biological system 12 (step S3). The signal generation unit 4 transmits the stimulation
signal 5 to a stimulation unit 10. The stimulation unit 10 applies the stimulation to the
biological system 12. In some arrangements, the simulation unit 10 comprises one or more
electrodes 14 and applies the stimulation to the biological system 12 via the one or more
electrodes 14. The stimulation unit 10 may comprise a power source for applying the
stimulation based on the stimulation signal. The stimulation may be achieved, for
example, by driving the one or more electrodes 14 with an electrical signal provided by the
power source. The biological system 12 may comprise the brain or a portion of the nervous
system of a human or animal other than the brain.

The stimulation signal is defined by at least one stimulation parameter. In some
arrangements, as exemplified in the detailed example described below, the stimulation
signal is configured to be phase-locked to a biomarker of the biological system and the at
least one stimulation parameter comprises a stimulation phase relative to the biomarker.
The biomarker may, for example, comprise a disease biomarker having rhythmicity, which
in the case of Parkinson’s disease may range from 14-30 Hz, and for tremor may range
from 3-8 Hz.

Alternatively, or additionally, the stimulation parameter may comprise one or more
of the following: a stimulation amplitude; a stimulation pulse width; and a stimulation
pulse frequency.

The system 2 further comprises a data receiving unit 6. The data receiving unit 6
receives time series biomarker data 7 (step S1). The biomarker data 7 comprises
measurement samples (which may be referred to herein as samples) obtained by
measurements performed on the biological system 12 at different respective times. The
biomarker data 7 is thus derived from measurements performed on the biological system
12. The measurements may be performed using the one or more electrodes 14 and/or by
other means. The biomarker data represents one or more biomarkers indicative of a

condition of the biological system that is affected by brain or nerve stimulation applied by
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the stimulation unit 10 based on the stimulation signal 5. The one or more biomarkers may
comprise a disease biomarker having rhythmicity, such as a biomarker affected by
Parkinson’s disease and/or tremor. The biomarker data may indicate a degree to which the
stimulation applied by the stimulation unit 10 is effective in suppressing a disease
biomarker. The condition of the biological system 12 that is affected by the stimulation
may thus be a disease condition such as Parkinson’s and/or tremor.

The system further comprises a controller 8. The controller 8 controls generation
of the stimulation signal by the signal generation unit 4 based on the received biomarker
data 5. The controller 8 uses a model of the biological system 12 to estimate an optimal
value of the at least one stimulation parameter using the biomarker data 5. The model is
configured to define strengths of contribution (which may be referred to herein as
weightings) of measurement samples to the estimate based on the times at which the
measurement samples were obtained.

In some arrangements, as exemplified in the detailed example described below, the
model comprises a Gaussian process. The Gaussian process may be configured to estimate
an objective function representing an expected variation of the biomarker data as a
function of the at least one stimulation parameter of the stimulation signal. The objective
function may for example be considered as a mapping between stimulation settings and
symptom suppression. By estimating the objective function, the Gaussian process can thus
enable estimation of a value of the at least one stimulation parameter that optimally
suppresses a disease biomarker. In the detailed example described below, an amplitude
response curve (ARC) representing a change in a population synchrony (p) (of a
population of neurons) due to stimulation delivered at a particular phase (y) is used as an
objective function. By configuring the model to define strengths of contribution of
measurement samples to the estimate based on the times at which the measurement
samples were obtained, the model can take account of changes in the objective function
over time.

The Gaussian process may be defined by a covariance function. As exemplified in
the detailed example described below, the covariance function may comprise a temporal
part. The covariance function may additionally comprise a time-invariant spatial part

representing prior knowledge of a shape of the objective function.

10



10

15

20

25

30

WO 2025/022112 PCT/GB2024/051935

In some arrangements, the temporal part and spatial part are combined into a
spatio-temporal covariance function using the Hadamard product, as described below with
reference to equation (9).

In some arrangements, the spatial part is implemented as described below with
reference to equation (10).

The model (e.g., Gaussian process) may comprise a forgetting component. In cases
where the model comprises a Gaussian process, the forgetting component may be
represented by the temporal part of the covariance function. The forgetting component is
configured to progressively decrease strengths of contribution of measurement samples as
a function of increasing age of the measurement samples. A strength of the forgetting
component (e.g., how quickly the forgetting component causes contributions from older
measurement samples to be suppressed) may be represented by a forgetting factor (referred
to as € in the detailed example below). The forgetting factor may, for example, have a
value between 0 and 1, where 0 represents no samples being forgotten and values near to 1
correspond to samples being forgotten so quickly that only a current sample is used to
estimate the objective function.

In some arrangements, the forgetting component is implemented as described
below with reference to equations (11) and (12). In some arrangements, the forgetting
factor may be learned using past data (e.g., past samples).

The model (e.g., Gaussian process) may comprise a structured temporal
component. In cases where the model comprises a Gaussian process, the structured
temporal component may be represented by the temporal part of the covariance function.
As exemplified in the detailed example described below, the structured temporal
component may comprise one or more periodic components. Each periodic component is
configured to contribute a variation in the strength of contribution of measurement samples
to the estimate that is periodic as a function of time. Each periodic component may thus
promote a greater degree of similarity between strengths of contributions of measurement
samples taken at corresponding time points in different cycles. For example, if a periodic
component has a period of one day, the periodic component will contribute to samples
taken at the same time on different days having more similar weightings than samples

taken at different times of day. Furthermore, when the model is estimating an optimal
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value of the at last one stimulation parameter at a particular time point in the cycle of a
periodic component, the periodic component will promote increased strengths of
contribution to the estimate from samples taken at the same time point in previous cycles.
This is illustrated for example in Figures 6(b) and 7(b), discussed below. In some
arrangements, the periodic component is implemented using an exponential sine squared
covariance function as exemplified in the detailed example below.

In some arrangements, the periodic component is implemented as described below
with reference to equation (13).

In some arrangements, the combination of the forgetting component and the one or
more periodic component is implemented as described below with reference to equation
(14).

The one or more periodic components may arise for example due to factors such as
biological rhythms, such as the circadian sleep-wake cycle or medication cycles. The one
or more periodic components may have a predetermined period (e.g., one day, or a period
between administration of treatments to a patient. Alternatively, or additionally, the
controller 8 may be configured to learn a period of one or more of the periodic
components. The structured temporal component may additionally or alternatively
comprise an aperiodic component. As exemplified in the detailed example described
below, the aperiodic component may comprise a progressive (e.g., monotonic) drift. The
progressive drift may be caused, for example, by progression of a disease state of the
biological system 12.

Embodiments of the disclosure may be implemented as methods. The methods
may include computer-implemented methods of generating a stimulation signal for brain or
nerve stimulation. The methods may comprise a method of performing brain or nerve
stimulation. Such methods may include generating a simulation signal and applying
stimulation to the biological system based on the generated stimulation signal. The
methods may include steps within the example framework method depicted in Figure 2. A
computer program and/or a computer program product (e.g., a non-transitory computer
program product) may be provided for executing computer-implemented method steps.

For example, the method may comprise receiving time series biomarker data (e.g.,

step S1 in Figure 2). The biomarker data comprises measurement samples obtained by
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measurements performed on a biological system at different respective times. The
biomarker data represents one or more biomarkers indicative of a condition of the
biological system that is affected by brain or nerve stimulation applied by a stimulation
unit based on a stimulation signal. The stimulation signal is defined by at least one
stimulation parameter. The method may comprise generating a stimulation signal (e.g.,
step S2 in Figure 2) for the stimulation unit based on the received biomarker data by using
a model of the biological system to estimate an optimal value of the at least one stimulation
parameter using the biomarker data. The model is configured to define strengths of
contribution of measurement samples to the estimate based on the times at which the
measurement samples were obtained. The generating of the stimulation signal may
comprise generating a stimulation signal for which the at least one stimulation parameter

has the estimated optimal value.

Detailed Example
Overview

Reference is made below to an algorithm based upon Bayesian optimization
(referred to as “BayesOpt”) with modifications to enable time-adaptive therapy
optimization (Time-Varying Bayesian Optimisation, referred to as “TV- BayesOpt”). The
TV-BayesOpt algorithm is an example of how the controller 8 may implement the
estimation of the optimal value of the at least one stimulation parameter using biomarker
data, as described above.

Further details are given below about implementation choices for TV- BayesOpt,
namely the surrogate model (i.e., a model used to estimate the shape of the true objective
function) and the acquisition function (i.e., how to select the next sample from the
parameter space). The surrogate model is an example of the model of the biological
system discussed above. The acquisition function is an example of how the controller may
use the biomarker data, for example to update the model and/or exploit the model to
provide an estimation of an optimal value of the at least one stimulation parameter.

Spatiotemporal covariance functions used for a time-varying implementation of the
BayesOpt algorithm (7V-BayesOpt) are described that incorporate prior knowledge

regarding the form of the objective function along with its anticipated drift in time. These
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covariance functions are examples of the covariance functions defining the Gaussian
process implementation of the model of the biological system discussed above. A form is
established of a dynamical model of neural synchrony and is used to evaluate the
performance of the system 2 in delivering optimal stimulation to suppress a rhythmic

biomarker as a proxy for symptom suppression.

Kuramoto Model

The Kuramoto model was used to investigate the performance of the TV-BayesOpt
algorithm. The Kuramoto Model provides a simple mathematical model to describe
synchronization in biological systems. In this specific case the model represents a
population of neurons as N coupled oscillators that oscillate with an intrinsic frequency
Wpiomarker- THis intrinsic frequency reflects the rhythmicity of the disease biomarker,
which in the case of Parkinson’s disease ranges from 14-30 Hz, and for tremor ranges from
3-8 Hz. The strength of interaction between the oscillators is captured by a coupling term
Kpiomarker» Where the influence of the j®* oscillator on the it" oscillator is described in
terms of phase progression (i.e. speeding up or slowing down) of the it oscillator

depending upon their difference in phase.
N

d_tl = Wpiomarker; + %Z Sln(ej - Bi) (1)

j=1
The model has been extended to account for the effects of exogenous perturbations which

is given by:

N
% = Wpiomarker, + —K”i""l\‘,‘""” D sin(0; - 0) + IX(DZ(6) 2
j=1
where [ is the intensity of stimulation, X (t) is a function whose value equals 1 at time ¢ if
stimulation is applied and is 0 otherwise, and Z(8;) is the phase response curve (PRC),
which describes the response of the it" oscillator to stimulation (i.e. speeding up or
slowing down) depending on the precise timing of the stimulation with respect to the
oscillator’s phase, ;. Neurons have been classified into two distinct categories based on
their PRCs that characterise their response to perturbation: type I PRCs either exclusively

delay or advance spike firing, whereas type II PRCs can both advance or delay dependent
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upon the specific phase at which stimulation is delivered. It has been demonstrated that
neural oscillators in tremor exhibit type II PRCs. Therefore, in the present example, the
PRC is described as Z(6;) = —sin(6;).

Under certain assumptions, the Kuramoto model can be solved to express the
behaviour of each oscillator in terms of the order parameters, p and ¥, describing the

population’s mean phase-coherence and mean phase respectively.

do;

E = Wpiomarker; + Kbiomarkerp Sin(lll - Bi) + IX(t)Z(Bi) (3)

The population’s mean phase-coherence, p, represents synchrony on the interval [0,
1] where p = 0 and p = 1 correspond to either complete desynchrony or synchrony,
respectively. In this manner, p can be used as a control signal used a proxy for population
level synchrony similar to that currently used in adaptive deep brain stimulation (DBS) to
capture instantancous biomarker power, or level of synchronization, in specific frequency
bands of a neural oscillation. Following from the introduction of oscillopathies, it is
assumed that lower levels of p corresponds to reduced disease symptoms whereas higher
levels of p reflects increased symptom severity. The performance of the TV-BayesOpt
algorithm can then be assessed by quantifying how the precise stimulation timing, i.e., the
optimal ¢ at which to apply stimulation, can minimize population synchrony (in terms of
p)-

The objective function for the TV-BayesOpt algorithm is represented as the effect
of phase-locked stimulation on synchrony (p). This can be quantified with an amplitude
response curve (ARC) where the ARC represents the change in the population synchrony
(p) due to stimulation delivered at a particular phase (1). The ARC therefore represents the
underlying objective function (mapping between stimulation settings and symptom
suppression) where certain phases of stimulation may increase or decrease population
synchrony. The shape of population ARC can be varied over time by updating the PRC

(Z(6,)) for the oscillators to emulate gradual or periodic changes.

Bayesian Optimization
To estimate the form of the ARC that maps from stimulation parameters to

population synchrony (i.e., the objective function), a surrogate model based on a Gaussian
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Process (GP) prior was implemented. The GP prior model can be thought of as a
probability distribution over a set of non-linear regression functions (as opposed to a
Gaussian distribution, which is a set over variables). This permits efficient estimation of a
mean function, as well as its relative uncertainty across the parameter space, indicating the
confidence in the evaluated objective function for each parameter value.

The objective function f(x) is fully defined by its mean u(x) and covariance
K(x,x"), that form sufficient statistics such that f(x)~GP(u(x), K(x,x")), where x in this
context are the stimulation parameters to be explored. The covariance function describes
the relationship between points in the parameter space, and is vital in determining the form
(e.g., smoothness, or periodicity) of the estimated objective function. Thus K (x, x")
describes the spatial covariance (i.c., the space between parameter x and its neighbour x”).
An example covariance function for use with arrangements of the present disclosure is
described below.

The mean and covariance functions allow us to derive a joint distribution of the
noisy outputs y (previously sampled simulation parameters) and the estimated value of the
objective function (mapping between stimulation settings and symptom suppression) f*

evaluated at a new sample point x* in the parameter space. This may be defined as:

- (] it g

where y~GP(u(x), K(x,x) + 62I),x = [x, ..., x,] and ¥y = [yy, ..., y»]. As additional

4

samples from the parameter space are evaluated, the prior is updated to form a posterior
distribution to improve the model’s approximation of the shape of the objective function,
f(x). Conjugacy between the prior and likelihood allows the posterior to be computed
analytically by omitting the evidence term. The predictive distribution can therefore be
written as
p(f.|Dp, x.)~N (., 0) &)
Where D,, = {x, f} represents the previously sampled parameter values and their respective
outcome values and the posterior distribution is defined as
o = K(x., 0)[K(x, x) + o717y (6.2)
0% = K(x,,x,) — K(x,, x)[K(x,x) + 621 'K (x,x,) (6.b)
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The acquisition function is used to identify regions of the parameter space which
should be tested during the optimization process. To determine the next sample to test
during the optimization process, the acquisition function a(x) uses the current estimate of
the underlying surrogate model and calculates the expected utility of all samples in the
parameter space. The next sample to be tested is subsequently selected as the sample point
x* which minimizes the acquisition function:

x, = argmin a(x; D) (7
X

A Gaussian Process - Lower Confidence Bound (GP-LCB) acquisition function was
chosen for the BayesOpt algorithm as it allows flexible tuning of the amount of parameter
space exploration during the optimization process. The GP-LCB is defined as

a.(x.) = p.(x.) — kno.(x,) (8)
where the parameter k,, rescales a, - the estimated uncertainty of the GP. To balance
between exploration of under sampled regions of the parameter space, or exploit already
sampled regions, the value of k,, in the acquisition function is chosen according to the
specific needs of the user where high k,, values favour exploration, and low k, values
favour exploitation, of the parameter space. The role of k,, for guiding this exploration-
exploitation trade-off when sampling from the parameter space between optimization steps
is illustrated in Figure 3 (exploration) and Figure 4 (exploitation) in which examples are
shown of either maximally explorative or exploitative acquisition functions.

To track a dynamically varying set of optimal therapy parameters, arrangements of
the present disclosure eschewed the common assumption that the objective function is time
invariant. When applied to time-varying systems the standard BayesOpt routine will
exhibit diminished performance as it assumes all samples have equal contribution to the
current estimate of the objective function. A TV-BayesOpt algorithm in contrast weighs
the contribution of previously tested samples to the current estimate based on the time at
which samples were taken in relation to the current estimation step. Sources of temporal
variation which lead to changes in the optimal parameter(s) may be gradual (e.g., linear),
such as during disease progression, or due to other factors such as biological rhythms, such
as the circadian sleep-wake cycle or medication cycles (e.g., periodic). The goal of the TV-

BayesOpt algorithm is thus to find the optimal parameter set for a given time, i.c., the
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parameters which provide the best suppression of symptoms, and to subsequently track the
development of this parameter set over time.

To meet these requirements, a spatio-temporal covariance function was
constructed. The spatio-temporal covariance function comprises two parts which are
referred to as the spatial covariance function (or spatial part) and the temporal covariance
function (or temporal part), respectively. The spatial covariance function in this context is
equivalent to the covariance function used for time- invariant BayesOpt and captures the
prior knowledge of the shape of the objective function. On the other hand, the temporal
covariance function captures the anticipated variation in the shape of the objective function
over time, i.¢., rescaling the relevance of previously sampled data in relation to the most
recent sample. The resulting spatio-temporal covariance function, K, (x, x"), is formulated
as the Hadamard product of the spatial, K (x, x"), and the temporal covariance functions,
K(t t'):

Ke(x,x') = K(x,x") O K(t,t") 9)

A multitude of covariance functions exist across the field of machine learning that
can describe complex topologies. The performance of the BayesOpt algorithm is thus
dependent on the selection of an appropriately shaped covariance function for the problem
that is being investigated.

In the present example, the problem investigated concerns the optimization of a
target phase for phase-locked stimulation to suppress a thythmic biomarker of disease.
Therefore, the parameter space (target phase values) is periodic, where —m and 7 radians
represent the same point in the parameter space. Therefore, the spatial covariance function
(i.e., the covariance between target stimulation phases in the parameter space) was
therefore selected to also be periodic using the exponential sine squared covariance

function:

2 sin? (—nlx — xll)
K(x,x") = exp| — 7 I (10)
X

where hyperparameters [, and T, are the length scale and period (incorporating our prior

knowledge of the periodicity of the parameter space).
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For biological systems there are several sources which may lead to variations in the
shape of the objective function over time, including disease progression (leading to
monotonic changes) and biological rhythms such as the circadian sleep-wake cycle
(leading to periodic changes), or a combination of the two. Examples of temporal
covariance functions that overcome these temporal variations are outlined in the following
sections. Topologies of these covariance functions are summarized below in Figures 5-7.

To accommodate gradual variations in the shape of the objective function a
‘forgetting’ covariance function that reduces the influence of older samples on the current
estimate can be implemented, as depicted in Figures 5(a), 6(a), and 7(a). Bogunovic et al.
(2016) introduced a covariance function that was defined to meet these requirements
(Bogunovic I, Scarlett J, Cevher V. Time-varying Gaussian process bandit optimization.

Artif Intell Stat. 2016;314-23), where the covariance function is defined as

|e-¢']

Ktt) =(1—¢€) 2 (1D)

where t is the time of the most current sample, t’ is the time at which previous samples

were taken and € is referred to as the forgetting factor. The forgetting factor, €, has a value
between [0, 1) which determines how quickly the contribution of previously taken samples
to the current estimate are reduced. A forgetting factor € = 0 corresponds to no data being
forgotten and all previous samples contributing equally to the estimate of the objective
function, while € values close to 1 correspond to previous data samples being forgotten so
fast that only the current sample is used to estimate the objective function. Moreover, as
|t — t'| - oo the contribution of previous samples on the current estimate reduces to 0.
This behaviour is graphically summarized in Figure 6(a).

An appropriate value of € can be learned using past data through maximum
likelihood estimation or by empirically selecting € to reduce the contribution of previous
samples based on a specified half-life:

In2
E=A=—

(12)

B ty/2
Where A corresponds to the half-life decay factor and t,/, defines half-life as a specified

number of samples, i.¢., a t; , value of 100 corresponds to the objective function value
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associated with the 100th last sample taken contributing only 50 % of its original value to
the current estimate of the surrogate model.

To accommodate periodic variations in the shape of the objective function a
periodic covariance function (i.e., a temporal covariance function part representing a
structured temporal component that is periodic) can be implemented to weight the
contribution of previously sampled data based on the specific time points in the cycle at
which the samples were taken, as depicted in Figures 5(b), 6(b), and 7(b). In this manner,
the contribution of samples taken at time points near the same parts of the cycle are
weighted more similarly to each other (i.e., such that the strengths of contribution of these
measurement samples to the estimate are more similar to each other) than those taken at
different time points in the cycle. This behaviour can be captured in a similar manner to

the spatial covariance function by using the exponential sine squared covariance function,
. o (|t —t']
2 sin (—Tt

K(t,t') = exp B
tp

(13)

where T; is the temporal period of the underlying biomarker oscillation (defined with the

same units as t) and [, ,, the length scale, controls the amplitude of the temporal

oscillation. In practice, the units of Ty will depend on the sampling protocol and may be
defined in either sample counts or physical timescales such as hours or minutes.
Furthermore, T; can be estimated empirically by tracking the variation of symptom
suppression under fixed stimulation parameters. Use of this covariance function captures
temporal variations which repeat themselves exactly, as depicted in Figure 6(b).

For implementations in real-life scenarios where both gradual and periodic
temporal variations may be superimposed due to both disease progression and biological
rhythms, the forgetting component and the structured temporal component (e.g., periodic
component) of the temporal covariance function can be combined, as depicted in Figures
5(c), 6(c), and 7(c). Doing so produces the temporal covariance function below which is
the product of the forgetting covariance function (forgetting component) and the periodic

covariance function (structured temporal component)
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|t—t'| 2 sin? (M)
Ktt)=(1-¢€) 2 exp| — ¢ (14)

2
lt,p

where €, [, ;, and T; are the covariance function hyperparameters as described above in the
previous sections. This temporal covariance function is used to subsequently reduce the
contribution of older samples on the current estimate while also flexibly tracking periodic

variations in the shape of the objective function over time, as depicted in Figure 6(c).

Simulation Details

The behaviour of the TV-BayesOpt algorithm was investigated in the Kuramoto
DBS model. The Kuramoto DBS model was initially simulated for a 200s period to allow
the model to reach its steady state behaviour. After 200s, the model was subsequently
simulated for 3000 optimization steps where each optimization step corresponded to a 58s
simulation period. During each optimization step, phase-locked stimulation at a target
phase value was applied only during the last 8s of the 58s simulation period. The initial 50s
of each optimization step was included to allow the model to return to its steady state post
application of phase-locked stimulation in the last optimization step. The output of each
optimization step, y, was quantified as the normalized change in the mean order parameter

during the stimulation period from its baseline value:

__ Pstum — Pbaseline

y=A4p (15)

Pbaseline

where Pz 1 the mean order parameter averaged over the 8 s stimulation period and
Pbasetine 1S the baseline mean order parameter value and was calculated as the mean order
parameter of the 25s period prior to stimulation application.

To initiate the TV-BayesOpt algorithm, data from the parameter space was needed.
To this end, 12 equally spaced samples between [-1, ) were tested to coarsely
characterize the population response to phase-locked stimulation at different stimulation
phase values. Following this, selection of subsequent phase values to be tested at each
optimization were selected by the TV-BayesOpt algorithm as described above.

Drifts in the objective function (mapping between stimulation settings and

symptom suppression) shape were simulated by incrementally adding a phase offset value
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to the Kuramoto DBS model PRC over the steps of the optimization process. Three drifts
in the optimum were simulated to explore the TV-BayesOpt algorithm performance at
locating and tracking an optimal phase value for desynchronizing the Kuramoto DBS
model during phase- locked stimulation. The performance of the algorithm at each
timestep was quantified using the cumulative regret, defined as

ny (F@0 = £ (Dearger,)) (16)

n

where Y, is the location of the true optimum value phase value for phase-locked
stimulation at optimization step &, Yrarget, 1S the stimulation phase value tested at the kth

optimization step, f(*) is the measured objective function value, i.e. Ap, at the specified
input value and n is the total number of optimization steps.

A gradual drift was simulated as a phase offset advancing from 0 to - over 3000
optimization steps, a periodic drift was simulated as a sinusoidal phase offset advancing
from 0 to -m and back to 0 over 100 optimization steps, and lastly the superimposed
gradual and periodic drifts were simulated as the superposition of the gradual and periodic
drifts.

Finally, sensitivity analyses were conducted to investigate the influence of the
temporal covariance forgetting factor, €, and period, T;, on the TV-BayesOpt algorithm’s
performance at tracking a gradual and periodic temporal drift and purely periodic temporal

drift, respectively.

Results

The performance of the TV-BayesOpt algorithm was investigated in the Kuramoto
DBS model for locating and tracking an optimum phase value to reduce population
synchrony during phase-locked stimulation. The behaviour of the Kuramoto DBS model in
response to phase-locked stimulation at different population phase values was first
investigated prior to simulation of gradual and periodic drifts in the location of the optimal
stimulation phase. The performance of the algorithm in each scenario was investigated in
comparison to the traditional time-invariant implementation of the BayesOpt algorithm.

After an initial 200s transient period the Kuramoto DBS model reached its steady

state behaviour with the magnitude of the order parameter p (i.e., population synchrony
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which is a direct correlate of symptom severity) settling to a value around 0.8, reflecting a
highly synchronized state. Once the model reached its steady state behaviour, the
population’s response to phase-locked stimulation was investigated using a static PRC for
the oscillator population that was set to —sin(#). Stimulation was applied to the population
at 12 equally spaced mean population phase values, Y;qrget, between (—m, ) (Figure 8).
As shown in Figure 8(c), phase-locked stimulation of the population between Yqrger =

(—m, - g) radians and Yi4rger = (g, m) radians resulted in desynchronization of the

population and a reduction in the magnitude of the order parameter (Ap < 0). In contrast,

phase-locked stimulation applied between Yigrger = (— %, g) radians resulted in increased

population synchrony, which was reflected in an increase in the magnitude of the
population order parameter (Ap > 0). The optimal phase value for phase- locked
stimulation, 1, was identified as the value that resulted in the greatest reduction in
population synchrony. This value was identified as " = m radians. Following this, the
location of 1* was dynamically varied as described in the subsequent sections.

The location of the optimal stimulation phase, ¥, achieving maximum population
desynchrony, was varied by incrementally adding an offset value, A, to the initial
population PRF: i.e., Z (Hj) = —sin(6; + AB). This is represented in Figure 9 where the
shape of the population ARC and PRC are dynamically varied by inclusion of Af. The
location of 1* could thus be gradually varied over the course of the optimization process
(Figure 9).

A gradual drift in the optimal stimulation phase value, 1", needed to desynchronize
the population of oscillators was tested using the TV-BayesOpt algorithm plus a temporal
forgetting covariance function and a simulation in which the optimal phase drifts from m to
0 radians (Figure 10). Such a gradual drift may be anticipated in a context such as disease
progression. The TV-BayesOpt algorithm resulted in lower cumulative regret over the
optimization process, calculated as the area under the curve (AUC) of the cumulative
regret plot, when compared to the time-invariant implementation of the BayesOpt
algorithm (Figure 10).

A periodic drift in the optimal phase value, Y*, for phase-locked stimulation was
emulated by periodically varying * from 7 to 0 radians over 100 optimization steps
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(representing a 1-day period). Implementation of the TV-BayesOpt algorithm with a
temporal periodic covariance function (where T; = 100) led to accurate tracking of the
location of the drifting ¥*, as depicted in Figure 11. Such a periodic change could be
expected from regular medication intake, circadian cycles, and other repeating patterns
which may influence therapy efficacy. The temporal periodic covariance function with a 1-
day period led to better tracking of 1 in comparison to static BayesOpt, as evidenced by a
lower cumulative regret AUC (Figure 11).

Superposition of gradual and periodic drifts in the optimal stimulation setting for
phase-locked stimulation, 1", of the Kuramoto oscillators required implementation of the
temporal forgetting-periodic covariance function. Implementation of the TV-BayesOpt
algorithm with this covariance function resulted in accurate tracking of the location of 1*
and produced a lower cumulative regret AUC in comparison to the time-invariant
BayesOpt algorithm (Figure 12).

A sensitivity analysis was conducted to investigate the influence of the temporal
kernel’s forgetting factor value, €, on the performance of the TV-BayesOpt algorithm
(Figure 13). For each € value investigated, the AUC of the cumulative regret plot was
calculated for tracking the gradual and periodic drift illustrated in Figure 12, with high
values indicating inaccurate optimization. Variation of the TV-BayesOpt algorithm
performance due to prior knowledge of the temporal drift was investigated by comparing
the algorithm performance when solely implementing a forgetting covariance function in
comparison to a forgetting-periodic covariance function; Figure 13 (upper and lower
curves respectively). For € values less than 0.04 the forgetting covariance function
resulted in greater cumulative regret AUC values than the forgetting-periodic covariance
function. For € values above 0.04, both temporal covariance functions resulted in
equivalent average regret AUC measures, where the algorithm provided the best
performance with an € value of 0.22 and corresponded to a data half-life (¢,/,) of 3.15
samples. Incorporating prior knowledge of periodicity in temporal variation by using the
temporal periodic covariance function led to more stable performance of the TV-BayesOpt
algorithm than when the forgetting factor alone was implemented. Consistent cumulative
regret AUC values lower than the forgetting covariance function performance alone were

observed for the algorithm when incorporating the temporal periodic covariance function.
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€ values above 0.22 resulted in increased cumulative regret AUC values as € values in this
range led to the algorithm forgetting data too quickly to accurately estimate the location of
the optimal value.

Thus, in summary, good algorithm performance is found to be achieved by
implementation of the TV-BayesOpt algorithm with smooth forgetting alone, but this
requires careful selection of an appropriate forgetting factor well-matched to the temporal
oscillation being tracked, as shown in Figure 13. When too low a value of € is selected, the
algorithm weighs the contribution of older samples too heavily which leads to poor
tracking of the optimum stimulation phase over time, Figure 13. When the TV-BayesOpt
algorithm additionally incorporates a periodic temporal covariance function whose period
is aligned to the temporal drift the algorithm performance is greatly improved for low €
values. Robust algorithm performance is subsequently observed for all € values below 0.4.
Above this value the algorithm performance begins to worsen due to previously taken data
samples being forgotten too quickly.

A sensitivity analysis was conducted to investigate the TV-BayesOpt algorithm
performance when the temporal drift anticipated by the algorithm, Ty, differed from the
true period of the example periodic temporal variation highlighted in Figure 11. The
performance of the algorithm was also compared to that of a scheduler which made
scheduled adjustments to maintain stimulation at the optimal phase value over a 24-hour
period, Figure 14.

The scheduler and TV-BayesOpt with a periodic temporal covariance function were
unable to track the location of the optimum stimulation phase when the temporal drift in
the optimal stimulation phase was different from the anticipated period. This resulted in
large AUC values for both the scheduler and algorithm when the offset to the true temporal
period was not 0.

When the temporal covariance function for the TV-BayesOpt algorithm was
implemented with smooth forgetting in addition to a periodic kernel the algorithm was able
to accommodate the offset in the difference between the true and anticipated temporal
periods, as evidenced by the lower regret AUC values.

Thus, in summary, the observations discussed above demonstrate that when there is

no difference between the actual and expected temporal periods, the algorithm performs
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well with a periodic temporal covariance function alone and maintains tracking of the
optimal stimulation phase. In this case, once the algorithm has locked to the location of the
optimum stimulation phase its performance is equivalent to a scheduler that updates the
location of the optimum stimulation phase value based on the anticipated temporal period
(Figure 14). Worsened performance is observed by both the algorithm and scheduler
however when there is a difference between the anticipated and actual temporal period
(Figure 14). This worsened algorithm performance can be compensated for by use of the
smooth forgetting covariance function which maintains algorithm performance at tracking
the location of the optimum phase when there is a mismatch between the actual and
anticipated temporal period by the TV-BayesOpt algorithm.

The above results highlight the relationship between smooth forgetting and
temporal rhythmicity in the temporal covariance function. Incorporation of both smooth
forgetting and knowledge of the rhythmic variations in therapy efficacy leads to better
performance of the TV- BayesOpt algorithm than when either of these are utilized by the

algorithm alone.
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CLAIMS

1. A system for generating a stimulation signal for brain or nerve stimulation,
comprising:

a signal generation unit configured to generate a stimulation signal for performing
brain or nerve stimulation on a biological system and to transmit the stimulation signal to a
stimulation unit configured to apply the stimulation to the biological system, wherein the
stimulation signal is defined by at least one stimulation parameter;

a data receiving unit configured to receive time series biomarker data comprising
measurement samples obtained by measurements performed on the biological system at
different respective times, the biomarker data representing one or more biomarkers
indicative of a condition of the biological system that is affected by brain or nerve
stimulation applied by the stimulation unit based on the stimulation signal; and

a controller configured to control generation of the stimulation signal by the signal
generation unit based on the received biomarker data, wherein:

the controller is configured to use a model of the biological system to estimate an
optimal value of the at least one stimulation parameter using the biomarker data, wherein
the model is configured to define strengths of contribution of measurement samples to the

estimate based on the times at which the measurement samples were obtained.

2. The system of claim 1, wherein the model comprises a forgetting component
configured to progressively decrease strengths of contribution of measurement samples as

a function of increasing age of the measurement samples.

3. The system of claim 2, wherein the model further comprises a structured temporal
component.
4. The system of claim 3, wherein the structured temporal component comprises one

or more periodic components.

5. The system of claim 4, wherein each periodic component is configured to
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contribute a variation in the strength of contribution of measurement samples to the

estimate that is periodic as a function of time.

6. The system of claim 4 or 5, wherein one or more of the periodic components has a
predetermined period, optionally corresponding to a periodicity of an underlying

biomarker oscillation of the biological system.

7. The system of any of claims 4 to 6, wherein the controller is configured to learn a

period of one or more of the periodic components.

8. The system of any of claims 3 to 7, wherein the structured temporal component

further comprises an aperiodic component.

9. The system of claim 8, wherein the aperiodic component comprises a progressive
drift, the progressive drift optionally corresponding to progression of a disease state of the

biological system.

10. The system of any of claims 3 to 9, wherein the model comprises a Gaussian

process defined by a covariance function.

11.  The system of claim 10, wherein the Gaussian process is configured to estimate an
objective function representing an expected variation of the biomarker data as a function of

the at least one stimulation parameter of the stimulation signal.

12.  The system of claim 10 or 11, wherein the covariance function comprises a
temporal part, the temporal part representing the forgetting component and the structured

temporal component.

13.  The system of claim 12, wherein the structured temporal component comprises a
periodic component and the temporal part of the covariance function, K(t,t"), comprises

the following:
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|t—t'| 2 sin? (M)
Kt t)=(10—-¢) 2 exp| — £

2
Ly

where 7 is the time of a most current measurement sample, ¢’ is a time at which a previous
measurement sample was taken, € is a forgetting factor defining a strength of the forgetting
component, l; ,, defines a length scale of the periodic component, and T; is a temporal

period of the periodic component.

14.  The system of any of claims 10 to 13, wherein the covariance function further
comprises a time-invariant spatial part representing prior knowledge of a shape of the
objective function, the temporal part and the spatial part optionally being combined using

the Hadamard product.

15.  The system of any preceding claim, wherein:

the stimulation signal is configured to be phase-locked to a biomarker of the
biological system and the at least one stimulation parameter comprises a stimulation phase
relative to the biomarker; and/or

the at least one stimulation parameter comprises a stimulation amplitude; and/or

the at least one stimulation parameter comprises a stimulation pulse width; and/or

the at least one stimulation parameter comprises a stimulation pulse frequency.
16.  The system of any preceding claim, further comprising the stimulation unit.

17.  The system of claim 16, wherein the stimulation unit comprises one or more

electrodes for applying the stimulation signal to the biological system.

18. A computer-implemented method of generating a stimulation signal for brain or
nerve stimulation, the method comprising:

receiving time series biomarker data comprising measurement samples obtained by
measurements performed on a biological system at different respective times, the

biomarker data representing one or more biomarkers indicative of a condition of the
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biological system that is affected by brain or nerve stimulation applied by a stimulation
unit based on a stimulation signal, wherein the stimulation signal is defined by at least one
stimulation parameter; and

generating a stimulation signal for the stimulation unit based on the received
biomarker data by using a model of the biological system to estimate an optimal value of
the at least one stimulation parameter using the biomarker data, wherein the model is
configured to define strengths of contribution of measurement samples to the estimate

based on the times at which the measurement samples were obtained.

19.  The method of claim 18, wherein the generating of the stimulation signal comprises
generating a stimulation signal for which the at least one stimulation parameter has the

estimated optimal value.

20. A method of performing brain or nerve stimulation, comprising:
generating a stimulation signal using the method of claim 20; and
applying stimulation to the biological system based on the generated stimulation

signal.

21. A computer program comprising instructions which, when the program is executed

by a computer, cause the computer to carry out the method of claim 20.
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