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SUMMARY

Our experiences often overlap with each other, yet
we are able to selectively recall individual memories
to guide decisions and future actions. The neural
mechanisms that support such precise memory
recall remain unclear. Here, using ultra-high field
7T MRI we reveal two distinct mechanisms that
protect memories from interference. The first mech-
anism involves the hippocampus, where the blood-
oxygen-level-dependent (BOLD) signal predicts
behavioral measures of memory interference, and
representations of context-dependent memories
are pattern separated according to their relational
overlap. The second mechanism involves neocor-
tical inhibition. When we reduce the concentration
of neocortical GABA using trans-cranial direct cur-
rent stimulation (tDCS), neocortical memory inter-
ference increases in proportion to the reduction
in GABA, which in turn predicts behavioral perfor-
mance. These findings suggest that memory inter-
ference is mediated by both the hippocampus and
neocortex, where the hippocampus separates over-
lapping but context-dependent memories using
relational information, and neocortical inhibition
prevents unwanted co-activation between overlap-
ping memories.

INTRODUCTION

Our decisions and actions are often guided by past experiences

that overlapwith each other in content or sensory information. To

ensure that interference between related or overlapping experi-

ences is minimized, a stable memory storage system is critical.

However, the precise physiological mechanism that supports
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stable memory storage in the absence of memory interference

remains unclear.

One way to minimize memory interference is to separate

stored information using contextual representations (McClelland

et al., 1995; Norman and O’Reilly, 2003; Shapiro and Olton,

1994). Behavioral data in humans provides supporting evidence

for this mechanism, as contextual cues help mitigate memory

interference between two lists of paired associates (Bilodeau

and Schlosberg, 1951). At the neural level, anticorrelated firing

patterns for opposing contexts can be observed in the hippo-

campal output regions (Butterly et al., 2012; McKenzie et al.,

2014). These contextual representations likely reflect the natural

consequence of pattern separation, a competitive mechanism

supported by the architecture of the hippocampus that orthogo-

nalizes representations of overlapping memories (Yassa and

Stark, 2011). However, it remains unclear how information within

contextual representations is organized. One possibility is that

contextual information is organized in a manner that reflects

the relational or configural structure of memory elements (Cohen

and Eichenbaum, 1993; Sutherland and Rudy, 1989). Consistent

with this suggestion, here we hypothesize that the hippocampus

helps protect against memory interference by separating ele-

ments of a partially overlapping memory according to their

relational similarity. Thus, elements that have different relational

positions across two overlapping but context-dependent mem-

ories are maximally separated.

In addition, an alternative way to protect stored memories

from interference involves using inhibition. Following learning,

new information is thought to be stored in the brain via modifica-

tion in the strength of excitatory connections (Hebb, 1949; Na-

bavi et al., 2014; Song and Abbott, 2001). In turn, these newly

modified excitatory connections are opposed by equivalent

changes in the strength of inhibitory connections (Barron et al.,

2016a; Froemke et al., 2007; Vallentin et al., 2016; Vogels

et al., 2011). This allows excitatory-inhibitory (EI) balance to be

maintained despite new learning (Froemke et al., 2007; Haider

et al., 2006; Okun and Lampl, 2008; Wehr and Zador, 2003),

and ensures that memories lie dormant unless EI balance is
ublished by Elsevier Inc.
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disturbed (Barron et al., 2016a; Jacobs and Donoghue, 1991;

Vallentin et al., 2016). Here, we hypothesize that the inhibitory

component of a memory, otherwise termed the inhibitory

engram (Barron et al., 2017), protects memories from interfer-

ence by preventing runaway excitation.

Consistent with this hypothesis, context-dependent behavior

in rodents is accompanied by modulation of neocortical inter-

neurons (Kuchibhotla et al., 2017), while, in humans, an increase

in neocortical GABA relative to glutamate accompanies over-

learning, a process known to protect memories from interference

(Shibata et al., 2017). Clinical investigations also support a key

role for inhibitory regulation of memory expression, as impaired

GABAergic regulation can readily account for delusions and hal-

lucinations reported in schizophrenia (Vogels and Abbott, 2007;

Yizhar et al., 2011). Thus, by gating memory expression (Barron

et al., 2016a, 2017; Vogels and Abbott, 2009), inhibitory engrams

may play a critical role in preventing unwanted interference be-

tween overlapping memories.

Here, we investigate the role of both the hippocampus and

neocortical inhibition in protecting against memory interference.

First, we test the hypothesis that contextual representations in

the hippocampus are organized using a relational code, thus

separating competing memories according to behaviorally rele-

vant information. Second, we test the hypothesis that neocor-

tical inhibition protects overlapping memories from interference.

To this end, we designed a task that required participants to

encode two overlapping but context-dependent memories

across two consecutive days. On the third day, interference be-

tween the two memories was measured using ultra-high field 7T

MRI. In the hippocampus, we observed an increase in blood-ox-

ygen-level-dependent (BOLD) signal during opportunities for

memory interference, which predicted subsequent behavioral

performance. In addition, representations of stimuli that

had different relational positions across the two overlapping

but context-dependent memories were maximally separated.

Then, to investigate the role of neocortical inhibition in protecting

memories from interference, halfway through the scan, we

manipulated the concentration of neocortical GABA using brain

stimulation and re-assessed evidence for memory interference.

The drop in neocortical GABA induced by brain stimulation pre-

dicted an increase in neocortical memory interference, which in

turn predicted deficits in behavioral performance. Together

these results suggest that memory interference is mediated by

two distinct mechanisms: a hippocampal mechanism in which

contextual representations are organized according to behavior-

ally relevant relationships, and a neocortical mechanism in

which inhibition protects overlapping memories from unwanted

co-activation.

RESULTS

Associative Learning and Experimental Design
On day 1 of the experiment, participants learned a set of associa-

tions between seven rotationally invariant abstract stimuli (Fig-

ure 1A), which together formed ‘‘memory 1’’. Within memory 1,

each stimulus was associated with two other stimuli, giving seven

bidirectional associations in total. The set of associations couldbe

arranged into a ring structure (Figure 1B), although this was never
made explicit to the participants. Instead, participants were in-

structed to learn the associations using a three-alternative forced

choice task (Figures1D,S1A,andS1C;seeSTARMethods).Rota-

tionally invariant abstract stimuli (Figure 1A) were used so that we

could latermake precise predictions about the brain region sensi-

tive to the learned associations (Barron et al., 2016a).

On day 2 of the experiment, participants learned a second set

of bidirectional associations between the same seven abstract

stimuli (Figure 1A), which together formed ‘‘memory 2’’. As in

memory 1, each stimulus in memory 2 was associated with

two other stimuli (Figure 1C). Participants again learned these

associations using the three-alternative forced choice task (Fig-

ures 1E, S1B, and S1D). Critically, the relational position of the

seven stimuli within the ring differed between memory 1 and

memory 2, as the positions of stimuli 3 and 6 were switched (Fig-

ures 1B and 1C). Consequently, four of the seven associations in

memory 2 were different from those in memory 1, while three as-

sociations remained the same. To help participants distinguish

between memory 1 and memory 2, contextual cues were used,

consisting of a unique background color (yellow or blue, random-

ized across participants) (Figures 1D and 1E) and a time interval

of approximately 24 hr between learning sessions (Figure 1F).

Thus, memory 1 and memory 2 included the same stimuli but

had different relational structures. The difference in relational

structure was designed to ensure that a subset of associations

across memory 1 and 2, those containing stimuli 3 or 6, were

different, while the remaining associations were matched. We

predicted that associations containing elements 3 or 6 were sus-

ceptible to memory interference, where memory interference

manifests as recall of a relational neighbor from the alternative,

inappropriate memory. Meanwhile, the matched portion of the

twomemories provided the necessary control. The experimental

design, therefore, included precise and controlled markers of

memory interference that could be assessed at both a behavioral

and neural level.

Hippocampus Mediates Memory Interference Using
Context-Dependent Relational Codes
To identify the physiological mechanisms that protect memories

from interference, we first considered the contribution made by

the hippocampus. First, we sought to show evidence for pattern

separation between memory 1 and 2 in the hippocampus, thus

building on prior evidence (Bonnici et al., 2012; Huffman and

Stark, 2014; Yassa and Stark, 2011). Second, we assessed the

organization of contextual representations that reflect the output

of pattern separation. In accordancewith the idea that the hippo-

campus organizes representations according to a relational

code (Eichenbaum, 2004; Nadel, 2008), we hypothesized that

elements that have different relational positions across two over-

lapping but context-dependent memories are maximally sepa-

rated. For the paradigm implemented here, we predicted that

representations of stimuli 3 and 6 would show maximum pattern

separation across memory 1 and memory 2.

To test these predictions, on day 3 of the experiment we used

fMRI to measure the BOLD response to the associative mem-

ories learned in memory 1 and memory 2 (Figure 1F). On each

trial of the scan task, a pair of stimuli was presented on either

a yellow or a blue background to provide a contextual cue for
Neuron 101, 528–541, February 6, 2019 529
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Figure 1. Experimental Design

(A) Seven stimuli were used for the experiment, where each stimulus was an abstract shape which could appear in four possible rotations.

(B–E) Example experimental protocol: (B) on day 1, participants learned seven associations between pairs of the seven stimuli shown in (A), and a contextual cue

was provided using a yellow background. The associations could be arranged in a ring structure, although this was not explicitly shown to participants. (C) On

day 2, participants learned seven associations between pairs of the seven stimuli. Four of the associations were different from those learned on day 1 as the

position of stimuli 3 and 6 were swapped. A contextual cue was provided using a blue background, a different color from that used on day 1. To learn the as-

sociations on day 1 (D) and day 2 (E), participants performed a 3-alternative forced choice task where the appropriate background color was used to provide a

contextual cue.

(F) Schematic showing protocol used across all 3 days of the experiment. On day 1 and day 2, participants completed phase 1 (Figures S1A and S1B) and at least

5 blocks of phase 2 (Figures 1D and 1E) of the training task. On day 3 of the experiment, participants started with block 1 (‘‘b1’’) of the scan task, as shown in

Figure 1G, before Magnetic Resonance Spectroscopy (MRS) measurements (‘‘t1’’) were taken to estimate baseline measures of 19 different metabolites. Anodal

tDCS was then applied for a total of 20 min to induce EI imbalance, with MRSmeasurements (‘‘t2’’) taken during the first 10 min, before block 2 (‘‘b2’’) of the scan

task commenced. After block 2 of the scan task, a third set of MRS measurements (‘‘t3’’) were obtained before participants exited the scanner to perform a

surprise memory test. ‘‘b’’ indicates block of fMRI acquisition. ‘‘t’’ indicates time point of MRS acquisition.

(G) During the scan task, participants observed pairs of stimuli presented consecutively against either a yellow or blue background. All possible pairs of stimuli

were presented in a random order.
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Figure 2. The Hippocampus Mediates

Memory Interference

(A–C) Hippocampal BOLD signal was higher on

trials where there was opportunity for memory

interference (i.e., when trials include stimuli 3 or 6

that have a different relational position between

memory 1 and memory 2; contrast estimated

across block 1 and block 2 of the fMRI task,

thresholded at p < 0.01 for visualization). Hippo-

campal BOLD signal was significantly higher in

right hippocampus (t23 = 4.34, p = 0.015, FWE

peak-corrected using a small-volume correction

(SVC) method, (A), while a similar trend was

observed in the left hippocampus (t23 = 3.66, p =

0.056, FWE peak-corrected using a SVC method,

(B). (C) Hippocampal BOLD signal across both

hippocampi, for visualization.

(D) After exiting the scanner on day 3, participants

performed a surprise memory test. On each trial,

participants were presented with a probe stimulus

with the background color providing the contex-

tual cue. They were then presented with three

option stimuli and were required to choose the

stimulus correctly paired with the probe stimulus

in the absence of feedback.

(E) Memory accuracy on the surprise memory test

(mean, ± SEM), for memory 1 (‘‘mem1’’) and

memory 2 (‘‘mem2’’). The more recent associa-

tions in memory 2 were remembered more accu-

rately than those in memory 1 (paired t test: t25 =

3.99, p < 0.001).

(F) Foil trials on the surprise memory test shown in

(D) were identified as those trials where one of the

three stimuli was incorrect given the current

context but correct in the alternative context.

(G) Hippocampal ROI across both right and left hippocampi, used to perform SVC method in (A) and (B), to extract parameter estimates in (H), and to extract

activity patterns for Representational Similarity Analysis (RSA) in Figure 3.

(H) The hippocampal BOLD response to trials where there was opportunity for memory interference in block 1 (Figure 1F) predicted the number of foil errors, a

behavioral index for memory interference, on the post-scan surprise memory test (Pearson’s correlation: r23 = 0.54, p = 0.006, after accounting for differences in

learning, see STAR Methods). ‘‘a.u.’’ refers to ‘‘arbitrary units.’’
memory 1 or memory 2 (Figure 1G; see STAR Methods). We

controlled for potential confounds introduced by expectation

suppression (Summerfield et al., 2008) by ensuring that each

possible pair of stimuli was presented equally often in a fully ran-

domized order. To ensure participants paid close attention to the

stimuli presented during the scan, participants were instructed

to detect ‘‘odd-ball’’ stimuli, which were not part of the seven

experienced during training. To improve the signal to noise ratio

(SNR) of the fMRI data in brain regions for which we had strong

prior hypotheses, we restricted the fMRI sequence to a partial

volume, thus increasing the number of measurements acquired

(for example partial volume see Figures S2A–S2C).

Across the two fMRI task blocks (‘‘block 1’’ and ‘‘block 2’’), we

observed an increase in the hippocampal BOLD signal to pairs of

stimuli that had a different relational position across memory 1

and memory 2 (i.e., pairs of stimuli that included stimuli 3

and 6), relative to pairs of stimuli that had the same relational po-

sition across bothmemories (Figures 2A–2C: contrast of interest;

right hippocampus: t23 = 4.34, p = 0.015, peak-level Family-Wise

Error (FWE) corrected using small volume correction (SVC), Fig-

ure 2A; left hippocampus: t23 = 3.66, p = 0.056, peak-level FWE
corrected using SVC, Figure 2B). Therefore, the hippocampal

BOLD signal increased on trials where there was opportunity

for interference between the two memories.

Next, we asked whether this hippocampal BOLD signal could

predict behavioral measures of memory interference. After the

scan session, participants performed a surprise memory test

and we assessed recall accuracy for all seven associations

within memory 1 and memory 2. The memory test involved the

three-alternative force choice task used during training, but

now in the absence of feedback (Figure 2D). On average, partic-

ipants correctly recalled the appropriate association on 72.9%of

trials, showing higher accuracy for more recent memories

(paired-sample t test, t25 = 3.99, p < 0.001, Figure 2E). In addition

to participants’ overall memory accuracy, behavioral memory

interference was quantified using participants’ performance on

‘‘foil trials,’’ namely those trials where the choice stimuli included

the stimulus that was correct given the contextual background

cue, but also a ‘‘foil’’ stimulus that would be correct in the alter-

native memory (Figure 2F). The percentage of foil errors made by

a participant corresponded to the percentage of foil trials where

the foil stimulus was chosen rather than the correct stimulus.
Neuron 101, 528–541, February 6, 2019 531



A B C Figure 3. Hippocampal Representations

Show Evidence for Contextual Pattern Sep-

aration, Organized by Relational Overlap

For each trial in the scan task, the pattern of BOLD

activity across voxels was extracted from the

hippocampus (Figure 2G), and representational

dissimilarity between all trials containing each of

the 7 stimuli was assessed using representational

similarity analysis (RSA). For example, represen-

tations of stimulus 1 inmemory 1 included all pairs

of stimuli shown on a yellow background that

included stimulus 1 (i.e., 1–1, 1–2, . 1–7).

(A) Representational dissimilarity matrix (RDM)

showing the average representational dissimilarity

between stimuli in memory 1 and memory 2, averaged across all participants, rank transformed and scaled into [0–1] for visualization.

(B) The RDM for each participant was correlated with a model RDM shown in Figure S2D to test evidence for pattern separation of hippocampal representations

by memory. Across participants, significant representational similarity within memory 1/2 versus betweenmemory 1 andmemory 2 was observed (Wilcoxon sign

rank test: Z23 = 3.34, p = < 0.001), even if stimuli 3 and 6 were excluded (see Figure S2G). Note: the dissimilarity of a trial to itself was excluded from the analysis.

‘‘a.u.’’ refers to ‘‘arbitrary units.’’

(C) The RDM for each participant was correlated with a model RDM shown in Figure S2E to test evidence for increased representational dissimilarity of stimuli

that had different relative position across memory 1 and memory 2 (stimuli 3 and 6). Across participants, significantly greater representational dissimilarity

between memory 1 and memory 2 was observed for stimuli 3 and 6 compared to all other stimuli (Wilcoxon sign rank test: Z23 = 2.26, p = 0.024). ‘‘a.u.’’ refers to

‘‘arbitrary units.’’
Thus, the percentage of foil errors characterized the extent to

which participants recalled associative memories learned in

context 2when in context 1 (or vice versa), providing a behavioral

measure of memory interference that reflects inappropriate

overgeneralization across contexts. Across participants, we

observed a positive relationship between the hippocampal

BOLD signal and the percentage of foil errors (hippocampal

BOLD signal to pairs of stimuli that included stimuli 3 or 6 minus

all other pairs in block 1, from ROI shown in Figure 2G, versus

percentage of foil errors: r23 = 0.54, p = 0.006, Figure 2H, after

accounting for differences in learning; see STAR Methods).

While these results suggest that the hippocampus may play a

key role in mediating memory interference, they leave open the

nature of the hippocampal code. If the hippocampus uses

contextual representations to pattern separate overlapping

memories, then representations of stimuli within memory 1

should be more similar to representations of other stimuli within

memory 1 compared to representations of stimuli in memory 2.

To test this hypothesis, we extracted the pattern of activity

across voxels in a hippocampal ROI (Figure 2G) for each trial in

both block 1 and block 2. Then, we used representational simi-

larity analysis (RSA) to quantify the representational similarity be-

tween memory 1 and memory 2 for each of the seven stimuli us-

ing the Mahalanobis distance (Figure 3A; see STAR Methods).

We observed higher representational similarity within versus be-

tween memory (Figure 3B; Wilcoxon sign rank test across the

group: Z23 = 3.34, p < 0.001; Model RDM: Figure S2D). Consis-

tent with previous literature (Bonnici et al., 2012; Huffman and

Stark, 2014; Yassa and Stark, 2011), this suggests that stimulus

representations in the hippocampus were pattern separated ac-

cording to contextual information.

Having shown evidence for pattern separation between mem-

ory 1 and memory 2, we next asked how contextual representa-

tions for memory 1 and memory 2 are organized. We predicted

that representations of stimuli within memory 1 and memory 2

are pattern separated in amanner that reflects the overlap in their
532 Neuron 101, 528–541, February 6, 2019
relational positions. Given the structure of the learned informa-

tion, the relational position of each stimulus was defined by its

neighbors within the ring structures (Figures 1B and 1C). There-

fore, only stimuli 3 and 6 had different relational positions across

memory 1 and memory 2. Across memory 1 and memory 2,

representational dissimilarity was higher for stimuli 3 and 6

relative to all other stimuli (stimuli 1, 2, 4, 5, and 7) (Figure 3C;

Wilcoxon sign rank test across the group: Z23 = 2.26, p =

0.024; Model RDM: Figure S2E). Notably, for this cross-memory

comparison, only the background color of the stimuli changed.

This result suggests that contextual representations are orga-

nized according to the relational overlap of competing mem-

ories, where memory elements that have a different relational

position across two memories are represented using more

distinct neural codes.

Manipulating Neocortical EI Balance to Measure the
Effect of Inhibition on Memory
Having characterized a role for the hippocampus in mediating

memory interference, we next asked whether inhibition in the

neocortex also plays a key role. In neocortex, associative mem-

ories appear to be stored by excitatory connections that are later

balanced by matched inhibition (Barron et al., 2016a; Froemke

et al., 2007; Vallentin et al., 2016; Vogels and Abbott, 2009).

Therefore, by day 3 of the experiment, we expected neocortical

representations of memory 1 and memory 2 to be stored in

balanced EI ensembles. However, if neocortical inhibition plays

a critical role in protecting overlapping memories from unwanted

interference then it should be possible to induce interference by

reducing inhibitory tone. To test this prediction, in the second

half of the day 3 scan session we applied non-invasive anodal

transcranial direct current stimulation (tDCS) (Figure 4A), a tool

previously used to induce a transient reduction in the concentra-

tion of neocortical GABA (Barron et al., 2016a; Kim et al., 2014;

Stagg et al., 2009) and to unmask otherwise silent neocortical

associative memories (Figure 4B) (Barron et al., 2016a).
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Figure 4. Manipulating Neocortical EI Balance using Brain Stimulation
A) After the first scan task (block 1) and while participants lay in the scanner, anodal tDCS was applied to the aLOC, with the cathodal electrode placed over the

contralateral supraorbital ridge.

(B) Previously published data (Barron et al., 2016a) shows re-expression of associative memories during application of anodal tDCS. This aLOC region was the

target location for the anodal tDCS electrode in the current experimental protocol. Orientation: neurological.

(C) Blue: average location of the MRS voxel across participants. Red: average location of the anodal tDCS electrode across participants, projected into the brain

(see STAR Methods). Orientation: neurological.

(D) 10mm radius sphere defined around the peak tDCS electrode location for all participants (see STAR Methods), used as a region of interest and for small

volume correction. Orientation: neurological.

(E) MRS was used to quantify the concentration of GABA relative to total Creatine at three time points indicated in Figure 1F (shown: mean ± SEM). A significant

reduction in relative GABA was observed during tDCS (‘‘Before tDCS’’ – ‘‘During tDCS,’’ t19 = 2.32, p = 0.016).

(F) MRSwas used to quantify the concentration of glutamate relative to total creatine at three time points indicated in Figure 1F (shown:mean ±SEM). A significant

increase in relative glutamate was observed after the second scan-task (‘‘Post-task’’ – ‘‘Before tDCS,’’ t19 = 2.60, p = 0.018).
Direct current stimulation increases cortical excitability, such

that neuronal firing rates increase (Bindman et al., 1962) along

with remote motor evoked potentials measured using transcra-

nial magnetic stimulation (TMS) (Nitsche et al., 2005). After stim-

ulation, the increase in cortical excitability is sustained for mi-

nutes to hours (Bindman et al., 1962) via a protein synthesis

dependent process (Nitsche and Paulus, 2000), which can be

used to enhance learning (Jacobson et al., 2012) and recovery

from stroke (Hummel and Cohen, 2006). Critically, the mecha-

nism responsible for this increase in cortical excitability appears

to involve a reduction in the concentration of available GABA,

as evidenced by in vivo spectroscopic measurements (Barron

et al., 2016a; Kim et al., 2014; Stagg and Nitsche, 2011; Stagg

et al., 2009).

Taking advantage of this non-invasive tool, we placed the

anodal tDCS electrode over anterior Lateral Occipital Complex

(aLOC) to induce variance in EI balance, in the target brain region

known to encode learned associations for rotationally invariant

shapes (Barron et al., 2016a) (Figure 4B). The cathodal electrode
was placed over the contralateral supraorbital ridge (Figures 4A

and S5A–S5D). Brain stimulation was applied immediately

before participants performed a second run of the scan task

(block 2, Figure 1F). Before, during, and after brain stimulation,

we used Magnetic Resonance Spectroscopy (MRS) to rapidly

measure the concentration of 19 different neural metabolites

(Figure 1F), including GABA and glutamate, from a 23232cm3

voxel placed just anterior of the anodal electrode (Figure 4C).

The concentration of each neural metabolite was assessed rela-

tive to the concentration of total Creatine (Cr), a suitable refer-

ence metabolite. Consistent with previous literature, application

of anodal tDCS was accompanied by a significant reduction in

the concentration of GABA relative to baseline (GABA:Cr for

‘‘baseline’’ > ‘‘tDCS,’’ t19 = 2.32, p = 0.016, Figures 4E and

S3E). As a consequence, block 2 of the scan task was performed

in a state of EI imbalance, where excitation outweighed inhibi-

tion. The reduction in GABAwas not sustained to the period after

the task (GABA:Cr for ‘‘baseline’’ > ‘‘post-task,’’ t19 = 0.83, p =

0.414, Figure 4E). In addition to this change in GABA, we also
Neuron 101, 528–541, February 6, 2019 533



observed a significant increase in the concentration of glutamate

but only after the second task session (glutamate:Cr for ‘‘base-

line’’ < ‘‘post-tDCS,’’ t19 = 2.60, p = 0.018; Figures 4F and

S3F). This change in glutamate may be attributed to participants

performing block 2 of the scan task and doing so in a state of EI

imbalance. See Table S1 for list of all measured metabolites.

Measuring Associative Memories Using Cross-Stimulus
Suppression
To test whether aLOC inhibition protects memories from interfer-

ence, we assessed evidence for neural memory interference dur-

ing the transient period of induced EI imbalance. To measure

memory interference in aLOC, we sought to index co-activation

between representations for different memory elements. We

took advantage of fMRI repetition suppression, which relies on

the fact that neurons show a relative suppression in their activity

in response to repeated presentation of a stimulus to which they

are sensitive (Miller et al., 1991; Sawamura et al., 2005). While

typically used to access sub-voxel representations for single

stimuli (Grill-Spector et al., 2006), ‘‘cross-stimulus’’ suppression

can be used to index the relative co-activation or overlap be-

tween representations coding for two different stimuli (Barron

et al., 2016b). We contrasted the BOLD response for each pair

of stimuli where suppression was expected against the BOLD

response to a control pair where suppression was not expected,

thus controlling for attentional effects (Figures 5A and S4A). The

ring topology of memory 1 and memory 2 provided an efficient

way to ensure that each stimulus contributed to both trials where

suppression was expected (directly associated stimuli in one or

both contexts) and control trials where suppression was not ex-

pected (stimuli separated by up to three associations in both

contexts).

We first replicated our previous findings (Barron et al., 2016a),

showing that cross-stimulus suppression increases during

anodal transcranial direct current stimulation (tDCS) between

directly associated stimuli that remain the same across memory

1 and 2 (Figure S4C). Furthermore, this increase in cross-stim-

ulus suppression can be predicted by the relative decrease in

GABA concentration (Figure S4H). This implies that inhibition in

aLOC acts to quench memory expression of recently acquired

associative memories, but during periods of EI balance these

otherwise dormant memories are re-expressed. Interestingly,

the extent to which associative memories were re-expressed

during EI imbalance was significant for memory 2 but not mem-

ory 1 alone (Figures S4D–S4G). This difference between recent

and more remote memories may in part be explained by a differ-

ence in the strength of associations in memory 1 compared to

memory 2, which could be observed at a behavioral level

(paired-sample t test, t25 = 3.99, p < 0.001, Figure 2E), even for

associations that remained the same across memory 1 and

memory 2 (paired-sample t test, t25 = 2.16, p = 0.040, Figure S4I).

Memory Interference Increases during Periods of EI
Imbalance
Having replicated our previous findings (Figure S4, Barron et al.,

2016a), we went on to investigate whether neocortical inhibition

plays a critical role in protecting against memory interference.

Capitalizing on the inter-subject variability to the anodal tDCS
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manipulation (Figure 4E), we predicted a two-way relationship

between the drop in relative GABA, our neural measures of

memory interference and behavioral measures of memory inter-

ference: if neocortical inhibition protects memories from interfer-

ence, the drop in relative GABA should predict neural measures

of memory interference, which should in turn predict behavioral

measures of memory interference.

As neural memory interference manifests as activation of a

relational neighbor from the alternative, inappropriate memory,

we sought to index this unwanted activation using cross-stim-

ulus suppression. To this end, we identified trials during the

scan task where participants were shown two stimuli that

were unassociated given the memory indicated by the contex-

tual cue, but directly associated in the alternative memory. Dur-

ing periods of EI imbalance, we predicted an increase in cross-

stimulus suppression on these trials, relative to trials where the

presented stimuli were indirectly associated in both memory 1

and memory 2 (Figure 5A). Thus, an increase in this cross-stim-

ulus suppression measure provided a proxy for an increase in

neural memory interference. Using this measure of memory

interference, we assessed evidence for the predicted two-way

relationship between the drop in concentration of relative

GABA, neural memory interference, and behavioral memory

interference.

First, we considered the relationship between the drop in rela-

tive GABA during application of anodal tDCS and the increase in

neural memory interference from the first to the second fMRI

scan task block. Across participants, the drop in relative GABA

positively predicted the increase in neural memory interference

measured using cross-stimulus suppression across memory 1

and memory 2 (r17 = 0.55, p = 0.021, Figure 5B, after accounting

for changes in glutamate, see STAR Methods). Notably, cross-

stimulus suppression measured from participants with minimal

change in the concentration of relative GABA provided effective

parametric control for participants where a larger drop in relative

GABA was observed, mitigating the need for a separate sham

condition. Thus, the variation in the drop in relative GABA

observed across participants provided a stringent framework

in which to assess the effect of EI imbalance on cross-stimulus

suppression. The positive correlation between the drop in

GABA and the increase in neural memory interference observed

across the group suggests that interference between overlap-

ping memories is predicted by EI imbalance.

Second, we considered the relationship between neural and

behavioral memory interference. Taking behavioral performance

from the surprise memory test performed after the scan, we pre-

dicted a positive relationship between neural memory interfer-

ence and the percentage of foil errors on the memory test, but

a negative relationship between neural memory interference

and overall accuracy on the memory test. Consistent with these

predictions, our cross-stimulus suppression index for neural

memory interference (block 2 � block 1) positively predicted

the percentage of foil errors and negatively predicted overall

behavioral memory accuracy (fMRI versus foil errors: r17 =

0.58, p = 0.013, Figure 5C; fMRI versus overall accuracy: r17 =

�0.67, p = 0.003, Figure 5D; after accounting for differences

in learning and changes in relative GABA and glutamate, see

STAR Methods). In summary, participants who showed greater
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Figure 5. Memory Interference for More Remote Memories Increases with Brain Stimulation

In all panels, ‘‘a.u.’’ refers to ‘‘arbitrary units’’; XSS indicates cross-stimulus suppression; ‘‘b’’ indicates block of fMRI acquisition, as shown in Figure 1F;

‘‘t’’ indicates ‘‘time point’’ of MRS measurement acquisition, as shown in Figure 1F.

(A) When participants performed the scan task in EI imbalance, we predicted an increase in XSS on trials where participants observed pairs of stimuli that were

unassociated in the current context but directly associated in the alternative context, relative to control trials where participants observed pairs of stimuli that were

unassociated in both contexts. This difference between control and XSS trials could be measured using the BOLD signal and was used as an index for neural

memory interference.

(B) Across participants, the decrease in relative GABA concentration observed during tDCS (‘‘Before tDCS’’ – ‘‘During tDCS,’’ Figure 4E) positively predicted the

increase in neural memory interference measured using fMRI cross-stimulus suppression (control – XSS for block 2 – block 1, memory 1 and memory 2)

(Spearman correlation: r17 = 0.55, p = 0.021, after accounting for changes in glutamate; see STAR Methods).

(C) Across participants, the increase in cross-stimulus suppression used tomeasurememory interference (control – XSS for block 2 – block 1) positively predicted

the percentage of foil errors participants made on the surprise memory test on day 3 (Spearman correlation: r17 = 0.58, p = 0.013, after accounting for differences

in learning and changes in relative GABA and glutamate).

(D) Across participants, the increase in cross-stimulus suppression used to measure memory interference (control – XSS for block 2 – block 1, Figure 5A)

negatively predicted average memory accuracy on the surprise memory test on day 3 (Spearman correlation: r17 = �0.67, p = 0.003, after accounting for dif-

ferences in learning and changes in relative GABA and glutamate).

(E) Within an ROI defined from the peak average tDCS electrode location shown in Figure 4C, extracted parameter estimates for memory 1 (shown: mean ± SEM)

revealed a significant increase in the fMRI cross-stimulus suppression measure for memory interference (control – XSS, as shown in (A)) from block 1 to 2 and

during block 2 alone (control – XSS for block 2 – block 1: t23 = 3.05, p = 0.006; control – XSS for block 2: t23 = 3.00, p = 0.006).

(F) Extracted parameter estimates from (E) split into the control and XSS conditions, as described in (A) (shown: mean ± SEM).

(G) T-statisticmap for cross-stimulus suppression index for neural memory interference during block 2 between unassociated stimuli in memory 1 that are directly

associated in memory 2 relative to pairs of stimuli that are unassociated in both memories (threshold at p < 0.01 uncorrected for visualization). Orientation:

neurological.

(H) Illustrating the anatomical proximity between the effects shown in Figures 5G (red) and S4G (blue) and previously acquired dataset shown in Figure 4B (green).

Orientation: neurological.
cross-stimulus suppression during periods of EI imbalance also

made more errors.

Together, these results suggest that a reduction in neocortical

GABAergic tone leads to an increase in neural memory interfer-

ence, which manifests in behavior as an increase in memory er-

rors. While this two-way relationship capitalizes on the variability
observed across participants, we next asked whether there was

a main effect of anodal tDCS on neural memory interference.

Using cross-stimulus suppression as a proxy for memory

interference, we predicted an overall increase in neocortical

memory interference during the application of anodal tDCS.

Furthermore, given that a reduction in neocortical GABA resulted
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Figure 6. Relating Learning Accuracy to Neural Measures of Memory Interference

In all panels, ‘‘a.u.’’ refers to ‘‘arbitrary units’’; XSS indicates cross-stimulus suppression; ‘‘b’’ indicates block of fMRI acquisition, as shown in Figure 1F.

(A) Across participants, learning accuracy for memory 2 (on day 2) positively predicted the cross-stimulus suppression index for neural memory interference

(Spearman correlation: r17 = 0.68, p = 0.003).

(B) Across participants, learning accuracy for memory 1 (on day 1) showed a negative trend with the cross-stimulus suppression index for neural memory

interference (Spearman correlation: r17 = �0.47, p = 0.053).

(C) During application of anodal tDCS in the second scan task (block 2, ‘‘b2’’), the hippocampal BOLD response to trials where there was opportunity for memory

interference did not predict behavioral measures of memory interference (Pearson correlation: r23 = �0.06, p = 0.764).

(D) Both groups of participants (see STARMethods) who received tDCS (‘‘MRI’’ and ‘‘tDCS’’) showed higher normalized foil errors on the surprisememory test on

day 3, relative to participants who received no intervention (‘‘Behav’’) (two-sample t test: t44 = 2.89, p = 0.006) (shown: mean ± SEM). However, there was no

difference in the percentage of foil errors made by participants who received tDCS and ‘‘Sham’’ (two-sample t test: t38 = 0.66, p = 0.515). Normalized foil errors

were defined as the percentage of foil errors on foil trials, after subtracting the percentage of non-foil errors on foil trials.
in pronounced re-expression of more recent associations in

memory 2 (Figures S4E–S4G), we predicted memory inter-

ference would manifest in memory 1 due to expression of

associations in memory 2 intruding or overriding the appropriate

expression of associations in memory 1.

Tomaximize sensitivity to the effect of anodal tDCS, we tested

for memory interference using cross-stimulus suppression

within an ROI defined from the peak anodal tDCS electrode

location, averaged across all participants (Figure 4C; see

STAR Methods). Within this ROI, across both memory 1 and

memory 2, we observed a trend toward an increase in

cross-stimulus suppression during application of anodal tDCS

(block 2 > block 1, t23 = 1.79, p = 0.087, Figure S6A). However,

consistent with our prediction, for memory 1, but not memory 2,

there was a pronounced increase in our cross-stimulus suppres-

sion measure of memory interference (block 2 > block 1,

memory 1: t23 = 3.05, p = 0.006 Figures 5E, 5F, and S6B;

memory 2: t23 = 0.57, p = 0.573, Figure S6C). To confirm

that memory interference was observed during application of

anodal tDCS, we also assessed effects in block 2 alone. Within

the same ROI we again observed significant cross-stimulus sup-

pression for memory 1 but not memory 2 (memory 1: t23 = 3.00,

p = 0.006, Figures 5E–5G and S6B) and within a 10mm sphere

centered on the peak of the average anodal tDCS electrode loca-

tion (memory 1: t23 = 3.60, p = 0.027, peak-level FWE corrected

using SVC with ROI shown in Figure 4D). Critically, this cross-

stimulus measure of interference in memory 1 was anatomically

proximal to the re-expression of directly associated memories

in memory 2 reported previously (Figure 5H).

These results suggest that re-expression of directly associ-

ated stimuli in memory 2 leads to interference with overlapping

but contextually distinct associations inmemory 1. In a final anal-

ysis, we asked whether the differential strength of memory 1 and
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memory 2 at encoding also predicts neural memory interference

during periods of EI imbalance. We found that participants’

average learning accuracy for associations in memory 2 posi-

tively predicted the cross-stimulus suppression measure for

memory interference (r17 = 0.68, p = 0.003, Figure 6A, after ac-

counting for differences in learning on day 1, memory accuracy

and changes in relative GABA and glutamate; see STAR

Methods), while a trend toward the reverse relationship was

observed for memory 1 (r17 = �0.47, p = 0.053, Figure 6B,

after accounting for differences in learning on day 2, memory

accuracy and changes in relative GABA and glutamate; see

STAR Methods). Therefore, participants that weakly encoded

memory 1 but strongly encoded memory 2 were more prone to

memory interference. Together with results above, this suggests

that interference between two memories during periods of EI

imbalance can be predicted by the extent to which EI imbalance

is induced (Figure 5B), but also the relative strength of the

memories at encoding (Figures 6A and 6B).

The Interplay between the Hippocampus and aLOC
These data suggest that, in addition to hippocampal pattern sep-

aration mechanisms, neocortical inhibition plays a key role in

protecting memories from interference. To assess the interplay

between the hippocampal and neocortical mechanisms, we re-

considered the relationship between our neural and behavioral

measures of memory interference. We noted that behavioral per-

formance on the surprisememory test after the scan sessionwas

predicted by both the hippocampal BOLD signal prior to anodal

tDCS (Figure 2H) and the change in neocortical cross-stimulus

suppression observed during anodal tDCS (Figures 5C and

5D). We asked whether hippocampal BOLD during anodal

tDCS (block 2) also predicted behavioral performance. Unlike

hippocampal BOLD prior to anodal tDCS (block 1), we observed



no relationship between hippocampal BOLD during tDCS

(block 2) and behavioral performance (hippocampal BOLD

block 2 versus foil errors: r23 = �0.06, p = 0.764, Figure 6C, after

accounting for differences in learning). Furthermore, this correla-

tion between block 2 hippocampal BOLD and behavior was

significantly different from the correlation observed between

block 1 hippocampal BOLD and behavior (difference in correla-

tion coefficient, block 1 versus block 2, permutation test: p =

0.032, Figure S6D; see STAR Methods).

While this difference in the relationship between behavior and

hippocampal BOLD signal in block 1 versus block 2 may be ex-

plained by the effect of time, this seems unlikely as there was no

significant change in the magnitude of the hippocampal BOLD

signal from block 1 to block 2 (paired t test: t23 = 0.25, p =

0.802). Rather, these results suggest that, in the absence of brain

stimulation, the degree to which irrelevant associative memories

are represented in the hippocampus predicts memory interfer-

ence. But, when neocortical GABAergic tone is reduced, signa-

tures of neural memory interference in aLOC but not hippocam-

pus predict memory interference. The hippocampus and aLOC

thus appear to employ distinct mechanisms to mediate memory

interference.

Inducing Behavioral Memory Interference Using Brain
Stimulation
In a final set of experiments, we asked whether application of

anodal tDCS alone might be sufficient to induce behavioral mea-

sures of memory interference. To this end, we repeated the

experiment in three additional groups of participants: (2) anodal

tDCS or (3) sham-anodal tDCS (delivered using a double-blind

set-up, see STAR Methods), or (4) no intervention. These three

additional groups of participants performed the same set of

tasks as participants receiving MRI (group 1), but outside the

scanner. On the day 3 surprise memory test, we observed a sig-

nificant difference between groups in mean accuracy and in the

percentage of normalized foil errors using a one-way ANOVA

(mean accuracy: F82 = 6.54, p < 0.001, Figure S1E; normalized

foil errors: F82 = 4.39, p = 0.007, Figure 6D), and a significant ef-

fect of stimulation when using multiple regression to control for

variation in learning accuracy and gender that occurred by

chance across the four experimental groups (effect of stimula-

tion on mean accuracy: t81 = 2.96, p = 0.004; normalized foil

errors: t81 = 2.87, p = 0.005). Post-hoc t tests revealed a signifi-

cant difference between participants who received both anodal

tDCS and MRI compared to participants who did not receive

any intervention (group 1, ‘‘MRI,’’ versus group 4, ‘‘Behav,’’ foil

errors: t44 = 2.89, p = 0.006; group 2, ‘‘tDCS,’’ versus group 4,

‘‘Behav,’’ foil errors: t38 = 2.30, p = 0.027; Figure 6D). For partic-

ipants who received sham-stimulation, there was no significant

difference in behavioral performance compared to participants

who did not receive any intervention (group 3, ‘‘Sham,’’ versus

group 4, ‘‘Behav,’’ foil errors: t38 = 1.07, p = 0.292; Figure 6D).

While these results suggest that anodal tDCS increased memory

interference at the behavioral level, there was notably no signif-

icant difference in behavioral performance between participants

who received anodal tDCS and those who received sham stim-

ulation (group 2, ‘‘tDCS,’’ versus group 3, ‘‘Sham’’: foil errors:

t38 = 0.66, p = 0.515; Figure 6D). Similar results were obtained
when using multiple regression to assess differences in the per-

centage of foil errors while controlling for variation in learning

accuracy and gender that occurred by chance across the exper-

imental groups (‘‘MRI’’ versus ‘‘Behav’’: t41 = 2.93, p = 0.005;

‘‘tDCS’’ versus ‘‘Behav’’: t35 = 2.32, p = 0.026; ‘‘Sham’’ versus

‘‘Behav’’: t35 = 1.38, p = 0.177; ‘‘tDCS’’ versus ‘‘Sham’’: t35 =

0.59, p = 0.559), andwhen assessing differences in overall mem-

ory accuracy (Figure S1E). These results suggest that while

anodal tDCS can induce behavioral memory interference, the

expectation of anodal tDCS has a similar effect on some partic-

ipants. Therefore, rather than mere application of brain stimula-

tion, the change in the concentration of relative GABA and neural

measures of memory interference are necessary to reliably pre-

dict behavioral measures of memory interference.

DISCUSSION

Our past experiences often overlap in their content but can

nevertheless be selectively recalled without interference from

other memories. Here, we investigated the neural mechanisms

that help protect memories from interference. By training human

participants to encode two context-dependent overlapping

memories, memory 1 and memory 2, we reveal evidence for

two distinct neural mechanisms that help mitigate memory inter-

ference. The first mechanism involves the hippocampus, where

overlapping but context-dependent memories are pattern sepa-

rated according to their relational overlap. The second mecha-

nism involves neocortical inhibition, which protects against un-

wanted co-activation between neocortical representations. We

discuss these two mechanisms in turn, before considering how

they may interact.

In the hippocampus we observed an increase in hippocampal

BOLD signal when participants observed pairs of stimuli that had

different relative positions across memory 1 and 2. In the

absence of brain stimulation this BOLD signal predicted partici-

pants’ performance on a surprise memory test completed after

the scan. When we investigated the nature of the underlying hip-

pocampal representations, we found evidence for pattern sepa-

ration by context, where representations of stimuli were more

similar to representations of other stimuli within the same mem-

ory compared to representations of other stimuli in the alterna-

tive memory. This finding is in agreement with a large body of

evidence suggesting an important role for the hippocampus in

pattern separation (Yassa and Stark, 2011), a mechanism that

is likely mediated by orthogonal contextual representations

(Butterly et al., 2012; McKenzie et al., 2014).

But, in addition, we show that pattern separation appears to

be organized according to the relational overlap between mem-

ory 1 and memory 2, as representations of stimuli 3 and 6 were

more dissimilar between memory 1 and memory 2, compared

to all other stimuli. Therefore, pattern separation is enhanced

for elements that change relational position between competing

memories. These results suggest that contextual representa-

tions, which emerge from a competitive pattern separation

mechanism, may be analogous to a series of cognitive maps,

where each set of learned relationships is stored in a unique

map distorted by the relational overlap with competing maps.

Interestingly, this account is consistent with the idea that the
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hippocampus represents a successor representation where

stimuli that predict different future states have more distinct rep-

resentations (Dayan, 1993; Stachenfeld et al., 2017; Garvert

et al., 2017; Momennejad et al., 2017). In this light, contextual

representations within the hippocampus may be construed as

configurable representations (Nadel, 2008), where the samema-

chinery responsible for coding spatial relationships is employed

when representing abstract, non-spatial stimuli.

While the hippocampus may help minimize interference by

separating context-dependent memories according to their

relational overlap, the sensory neocortex appears to employ a

different mechanism. By downregulating the concentration of

neocortical GABA using anodal tDCS (Barron et al., 2016a;

Kim et al., 2014; Stagg et al., 2009), here we show that during

periods of EI imbalance, neocortical memory interference in-

creases. To quantify neural memory interference, we used ul-

tra-high field 7T MRI to measure cross-stimulus suppression, a

proxy for representational similarity between different elements

of the memories (Barron et al., 2016b; Krekelberg et al., 2006).

We show that the drop in GABA quantified using MRS predicts

our neural measure of memory interference, which, in turn, pre-

dicts behavioral measures ofmemory interference. This two-way

relationship reveals a key role for neocortical inhibition in pro-

tecting against memory interference.

We note that in this study we used tDCS as a tool to induce

variability in the concentration of GABA in aLOC, which our

MRS measures show was successfully achieved. Indeed, the

range in inter-subject variability in induced EI imbalance pro-

vided a stringent framework within which to test our hypotheses,

as fMRI measures from participants with a low change in GABA

parametrically controlled for fMRI measures from participants

with a higher change in GABA. The variability in GABA thus miti-

gated the need for a sham control group, or a control voxel from

which to measure MRS, and provided a precise prediction for

neural and, in turn, behavioral memory interference. When we

assessed the effect of tDCS alone on behavioral memory inter-

ference, no significant difference in behavioral measures of

memory interference was observed between a group of partici-

pants receiving tDCS relative to a group receiving sham stimula-

tion. These behavioral findings confirm that a measure of EI

imbalance, notmere application of tDCS, is necessary to provide

a reliable predictor of memory interference.

While our findings suggest that neocortical inhibition, or

inhibitory engrams, are critical for stable memory storage,

they also raise a number of questions regarding the formation

of inhibitory engrams and the accompanying timescale of this

process. In the rodent primary auditory cortex, changes in the

strength of excitatory connections are accompanied by inhibi-

tory rebalancing after approximately 90 min (Froemke et al.,

2007). This implies that a ‘‘critical period’’ of EI imbalance and

memory instability occurs between initial learning and the for-

mation of inhibitory engrams. Consistent with this hypothesis,

a transient period of memory instability has been reported

immediately after learning, during which memories may be inte-

grated with existing knowledge that share abstract or higher-

level properties (Mosha and Robertson, 2016). This integration

is facilitated by offline reactivation and coordinated interactions

between hippocampal and neocortical engrams (Mosha and
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Robertson, 2016; Preston and Eichenbaum, 2013; Schlichting

and Preston, 2014).

While this opportunity to integrate newly encoded memories

with existing knowledge has clear advantages, the relative

instability of memories during this critical period makes them

vulnerable to interference. This trade-off between integration

and interference may determine the transient nature of the crit-

ical period. Indeed, if sufficient time is left between acquisition

of memories that are overlapping or share a common structure,

integration is no longer observed (Mosha and Robertson, 2016),

nor is interference, as shown here in the absence of anodal tDCS

stimulation. In addition to time, other factors such as overlearn-

ing also appear to terminate the critical period (Mosha and

Robertson, 2016) by restoring EI balance with a shift from gluta-

mate-dominated excitation to GABA-dominated inhibition (Shi-

bata et al., 2017).

But, in addition to the timescale of inhibitory engram forma-

tion, both memory expression and memory interference are

also likely to be affected by the underlying strength of the en-

coded memory. For example, if the excitatory strength of an

associative memory is weak, neural and behavioral expression

of a memory during recall will be reduced. Here, we show a sig-

nificant reduction in behavioral measures of memory accuracy

for associations in memory 1 relative to memory 2 (Figure 2E),

even for associations that remain the same across memory 1

and 2 (Figure S4I). At the neural level, a relative weakening in

the strength of excitatory connections in memory 1 relative

memory 2may explain why cross-stimulus suppression between

directly associated stimuli, an index for memory expression, was

only observed for memory 2 (Figures S4D and S4E), while mem-

ory interference effects were only observed for memory 1 (Fig-

ures 5E–5G).

By combining ultra-high field 7T fMRI with MRS, brain stimula-

tion, and behavioral measures, the protocol described here illus-

trates how macroscopic measures of the human brain can be

used to index micro-circuit processes. This has notable transla-

tional value for clinical populations where microcircuit disruption

is not readily amenable to investigation, particularly conditions

that have been attributed to disturbances in EI balance. For

example, in schizophrenia delusions and hallucinations have

been attributed to perturbed inhibitory gating (Vogels and Ab-

bott, 2007; Yizhar et al., 2011), while memory loss and confusion

in early stage dementia have been associated with hyperactivity

(Busche and Konnerth, 2016). The data presented here may be

considered amodel for these clinical phenotypes, where neocor-

tical EI imbalance causes unwanted reactivation of irrelevant

memories that may have overlapping excitatory engrams with

those activated by incoming stimuli. In the absence of appro-

priate inhibitory regulation, otherwise latent memory engrams

are activated in an uncontrolled manner causing confusion or

hallucinations. The protocol implemented here thus provides a

basis from which to further explore mechanisms responsible

formemory impairment in clinical conditions that report evidence

for EI imbalance.

Finally, we considered the interplay between the hippocampal

and neocortical mechanisms for mitigating against memory

interference. When we reduced the concentration of neocortical

GABA using anodal tDCS, interestingly, the hippocampal BOLD



signal no longer predicted behavioral performance on the sur-

prise memory test. This suggests that inhibitory gating in the

aLOCmay influence context-dependent hippocampal represen-

tations. Although beyond the scope of this investigation, it is also

interesting to speculate about the reverse relationship, the influ-

ence of context-dependent relational hippocampal codes on

neocortical memory engrams. One possibility is that analogous

to cholinergic modulation of neocortical interneurons observed

during context-dependent behavior (Kuchibhotla et al., 2017),

the hippocampus mediates selective release of neocortical

memory engrams by targeting neocortical inhibition (Barron

et al., 2017). This interaction between the hippocampus and

neocortexmay facilitate selective reactivation of neocortical rep-

resentations duringmemory recall, providing an index for distrib-

uted memory engrams (Teyler and Rudy, 2007).

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Participants

d METHOD DETAILS

B Behavioral training

B fMRI scan task

B fMRI imaging protocol

B MRS

B tDCS

B Double-blind procedure for anodal/sham tDCS

B fMRI data analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B fMRI statistics and ROI specification

B Representational Similarity Analysis

B Correlations between fMRI, behavioral and MRS data

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and one table and can be found

with this article online at https://doi.org/10.1016/j.neuron.2018.11.042.

ACKNOWLEDGMENTS

R.S.K. is supported by an EPSRC/MRC-funded studentship (EP/L016052/1).

T.E.J.B. is supported by a Wellcome Trust Senior Research Fellowship

(WT104765MA), together with a James S. McDonnell Foundation Award

(JSMF220020372). H.C.B. is supported by a Junior Research Fellowship

fromMerton College (University of Oxford) and the John Fell Oxford University

Press Research Fund (Grant 153/046). The Wellcome Centre for Integrative

Neuroimaging is supported by core funding from the Wellcome Trust

(203139/Z/16/Z).

AUTHOR CONTRIBUTIONS

All of the authors contributed to the preparation of the manuscript. R.S.K.,

U.E.E., A.C.P., T.E.J.B., and H.C.B. contributed to the design of the study;

R.S.K., U.E.E., A.C.P., and H.C.B. acquired the data; R.S.K., H.N., U.E.E.,

and H.C.B. analyzed the data.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 26, 2018

Revised: October 12, 2018

Accepted: November 20, 2018

Published: December 20, 2018

REFERENCES

Barron, H.C., Vogels, T.P., Emir, U.E., Makin, T.R., O’Shea, J., Clare, S.,

Jbabdi, S., Dolan, R.J., and Behrens, T.E.J. (2016a). Unmasking latent inhibi-

tory connections in human cortex to reveal dormant corticalmemories. Neuron

90, 191–203.

Barron, H.C., Garvert, M.M., and Behrens, T.E.J. (2016b). Repetition suppres-

sion: a means to index neural representations using BOLD? Philos. Trans. R.

Soc. Lond. B Biol. Sci. 371, 371.

Barron, H.C., Vogels, T.P., Behrens, T.E., and Ramaswami, M. (2017).

Inhibitory engrams in perception and memory. Proc. Natl. Acad. Sci. USA

114, 6666–6674.
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barron@pharm.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
91 healthy volunteers participated in the study (group 1: ‘‘MRI’’ with tDCS, n = 30, mean age of 24.0, 17 females; group 2: ‘‘tDCS,’’

n = 20, mean age of 21.9, 18 females; group 3: ‘‘Sham,’’ n = 20, mean age of 24.1, 9 females; group 4: ‘‘Behav,’’ n = 21, mean age of

23.2, 11 females). All experiments were approved by the Oxford University ethics committee (reference number ref R43594/RE001).

All participants gave informed written consent.

In group 1, three participants dropped out after the first day as they were not able to achieve the day 1 training criteria (see below).

In group 1, one participant was excluded due to a fault on the scanner which prevented data acquisition in the second half of the scan

session. In group 4, one participant was excluded after revealing that they had an arteriovenous malformation in the cerebellum.

METHOD DETAILS

Behavioral training
All behavioral tasks were coded inMATLAB 2016b using Psychtoolbox (version 3.0.13). Seven different stimuli were presented to the

participant, referred to as 1:7. Stimuli were rotationally invariant gray shapes (Figure 1A), which were observed in one of four possible

rotations, with each rotation separated by 90� (as described in Barron et al., 2016a). Learned associations between these rotating

shapes are known to be represented in a localized and superficial region of neocortex (Barron et al., 2016a), thus providing a suitable

target for anodal tDCS (see below). The experiment was conducted across three days (Figure 1F). On the first day participants per-

formed a training task, see below, to learn seven bidirectional associations between the seven stimuli. The set of associations

could be arranged in a ring structure (Figure 1B), where each stimulus was associated with two other stimuli (1 with 2, 2 with 3,

etc. and 7 with 1). Participants were not explicitly made aware of the ring structure. Stimulus allocation within the ring structure

was randomized across participants using MATLAB’s random number generator.

The training task included two phases. During phase 1 of the training task participants were passively exposed to seven pairs of

associated stimuli. On each trial of phase 1, a pair of associated stimuli was presented against a background color (blue or yellow,

depending on the training day) for 3 s duration (see Figures S1A and S1B). The stimulus presented on the left hand-side was random-

ized on each trial. Each pair of stimuli was presented four times in total, once for each of the four possible orientations of each stim-

ulus. Across trials, the order in which pairs of stimuli were presented was randomized. The background color was different on day 1

and day 2, thus providing a contextual cue for the learned associations. Participants were allowed to repeat phase 1 of the training

task before each phase 2 block if they wished to do so.
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During phase 2 of the training task participants performed an active task, involving a three-alternative forced-choice task (Figures

1D and 1E). On each trial of the three-alternative forced-choice task, one of the seven stimuli was shown as a probe stimulus for 1 s

before three choice stimuli were presented in randomized positions across the screen. As in phase 1, stimuli were presented against

a background color (blue or yellow, depending on the training day), used to provide a contextual cue. The three choice stimuli

included one stimulus to which the probe stimulus was associated, and two stimuli to which the probe stimulus was not associated.

Participants were instructed to select the correctly paired stimulus as fast as possible, without compromising their accuracy, using

the appropriate keyboard button, ‘b’, ‘n, or ‘m’. If participants failed to make a response within 3 s they received an on-screen mes-

sage indicating that they were too slow. Participants received feedback for each choice, where the probe stimulus together with the

correctly paired choice stimulus was presented for 1.5 s. For each correct response, participants were assigned 50p. Each task block

included 100 trials in total, and each pair of associated stimuli was presented at least 14 times. Across trials, the rotation of the pre-

sented stimuli and the trial order were randomized. At the end of each task block three percent of trials were randomly selected and

participants received the sum total reward from these trials.

On the second day, participants again learned seven associations between the seven stimuli, however the position of the stimuli

within the implicit ring structure was altered relative to the first day. In particular, stimuli ‘30 and ‘6’ were switched, resulting in four new

associations and three associations that remained the same across days (Figure 1C). To indicate this change in the implicit associa-

tive structure, the background color of the screen (blue or yellow) was changed from day 1 to day 2. The color assigned to day 1 and 2

was randomized across participants. To learn the new arrangement of stimuli, participants underwent both phase 1 and 2 of the

training task again, thus following the same protocol as used on day 1 (Figures 1E and S1B).

On both day 1 and 2, the criterion for stopping the phase 2 training task was as follows: participants were required to complete at

least five blocks and reach at least 90% accuracy on all of the seven associations. If after five blocks of phase 2 of the training task

participants did not reach the criterion of 90% accuracy on all of the seven associations, then they were required to continue

completing phase 2 task blocks until this criterion was met (Figure S1F). By ensuring that participants completed at least five blocks

of phase 2 of the training task on both day 1 and 2, our experimental protocol minimized differences in the number of phase 2 trials

completed on day 1 compared to day 2, and minimized differences in the number of phase 2 trials completed across participants.

Across all 4 experimental groups, 3 out of 91 participants dropped out of the experiment after not reaching 90%accuracy on all seven

associations despite completingmultiple phase 2 training task blocks. Data from these participants was not included in any analyses.

As some participants got tired during the final training blocks of the phase 3 training task, performance during the final and/or penul-

timate task block was sometimes compromised. For this reason, ‘learning accuracy’ on both day 1 and 2 was estimated as the

average performance across trials on each participant’s highest performing task block (Figures S1C and S1D).

On the third day of the experiment, participants were required to perform the fMRI scan task (see below, Figure 1G). The fMRI scan

task was performed inside the scanner for group 1, but outside the scanner for groups 2-4. Immediately after exiting the scanner

(group 1), or immediately after the scan task (groups 2-4), participants were given a surprise memory test designed to assess par-

ticipants’ memory for the associations learned on both day 1 and day 2 (Figure 2D). The memory test involved a variant of the

three-alternative forced-choice task used during training on day 1 and 2 (Figures 1D and 1E). However, unlike the training task,

the background color switched randomly between trials to indicate either the day 1 or day 2 context, and the task was presented

in the absence of feedback. Given the probe stimulus and the background color, participants were instructed to select the correct

associated stimulus. The memory test constituted 100 trials, with half presented on the yellow background and half on the blue

background.

fMRI scan task
The fMRI scan task involved participants viewing the seven visual stimuli used in the training task (1:7), presented via a computer

monitor, which for group 1 was then projected onto a screen inside the scanner bore. On each trial two stimuli were presented

consecutively for 800 ms each, with an inter-stimulus interval of 300 ms (Figure 1G). The inter-trial interval was selected from a trun-

cated gamma distribution with mean of 2.9 s, minimum of 1.5 s and maximum of 9.7 s. To control for potential confounding effects of

expectation suppression (Summerfield et al., 2008), all stimuli, all possible pairs of non-repeating stimuli, and all possible rotations of

each stimulus were presented equally often in a fully randomized order. Participants were required to perform a task incidental to the

contrast of interest which involved identifying whether the presented stimuli were familiar or ‘‘oddball.’’ Oddball stimuli, defined as

stimuli that did not belong to the training set 1 to 7, were randomly inserted into 7% of trials. Participants were instructed to press

a button on an MR compatible button box using their right index finger when they identified ‘‘oddball’’ stimuli but not if both stimuli

on the trial were familiar. No feedback was given. Each task block lasted twenty minutes and included 196 trials, with each stimulus

presented 52 times, with 13 examples of each of the four possible rotations per stimulus. Within each block, each pair of non-

repeating stimuli was presented 4 times in each context, while each pair of repeating stimuli was presented 2 times in each context.

Each participant performed two task blocks.

fMRI imaging protocol
Participants in group 1 completed the scan task within a 7 Tesla Magnetom MRI scanner (Siemens) with 1-channel transmit and a

32-channel phased-array head coil (Nova Medical, USA) at the Wellcome Centre for Integrative Neuroimaging Centre (University

of Oxford). Current 7T radio-frequency (RF) coil designs suffer from B1 inhomogeneity effects which were pronounced in the right
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temporal lobe. To overcome this, we positioned two barium titanate dielectric pads (4:1 ratio of BaTiO3:D2O, with a relative permit-

tivity of around:300, and size 1103 1103 5 mm3) over the right temporal lobe in all 7T scanning sessions, causing a ‘‘hotspot’’ in the

RF distribution at the expense of distal regions (Brink and Webb, 2014; Teeuwisse et al., 2012). The tDCS electrode was situated

between the dielectric pad and the head.

To acquire fMRI data a multiband echo planar imaging (EPI) sequence was used to acquire 50 1.5 mm thick transverse slices with

1.5 mm gap, in-plane resolution of 1.53 1.5 mm2, repetition time (TR) = 1.512 s, echo time (TE) = 20 ms, flip angle = 85�, field of view

192mm, and acceleration factor of two. To increase SNR in brain regions for which we had strong prior hypotheses, we restricted the

fMRI sequence to a partial volume, thus increasing the number of measurements acquired. The partial volume covered occipital and

temporal cortices (see Figures S2A–S2C) and in each session 644–723 volumes were collected (:20 min). For each participant, a

T1-weighted structural imagewas acquired to correct for geometric distortions and perform co-registration between EPIs, consisting

of 176 0.7 mmaxial slices, in-plane resolution of 0.73 0.7mm2, TR = 2.2 s, TE = 2.96ms, and field of view = 224mm. A field mapwith

dual echo-time images was also acquired (TE1 = 4.08 ms, TE2 = 5.1 ms, whole-brain coverage, voxel size 2 3 2 3 2 mm3).

MRS
For participants in group 1, during the scan session MRS data was acquired as described in (Barron et al., 2016a). B0 shimming was

performed in a two-step process. First, GRE-SHIM (field of view, 3843 384mm2; TR = 600ms; TE1/2 = 2.04/4.08ms; slice thickness

4 mm; flip angle 15�; slices 64; scan time 45 s) was used to determine the optimal first- and second-order shim currents. The second

step involved only fine adjustment of first-order shims using FASTMAP (Gruetter and Tkác, 2000). The modified semi-LASER

sequence, previously shown to have minimal chemical shift displacement error (CSDE), was used with TE = 36 ms, TR = 5–6 s to

acquire MRS measurements in a 2 3 2 3 2 cm3 volume of interest (VOI), positioned next to the tDCS electrode (Figure 4C) (Oz

and Tká�c, 2011).

For each MRS measurement between 65 and 130 scan averages were collected, giving a total acquisition time of around 10 min.

Three measurements were acquired for each participant, before and during tDCS, and after the second task block (Figure 1F). Me-

tabolites were quantified using LCModel (for example spectra: Figures S3A and S3B) (Provencher, 1993, 2001). Themodel spectra of

alanine (Ala), aspartate (Asp), ascorbate/vitamin C (Asc), glycerophosphocholine (GPC), phosphocholine (PCho), creatine (Cr), phos-

phocreatine (PCr), GABA, glucose (Glc), glutamine (Gln), glutamate (Glu), glutathione (GSH), myo-inositol (myo-Ins), Lactate, N-ace-

tylaspartate (NAA), N-acetylaspartylglutamate (NAAG), phosphoethanolamine (PE), scyllo-inositol (scyllo-Ins) and taurine (Tau) were

generated based on previously reported chemical shifts and coupling constants by VeSPA Project (Versatile Simulation, Pulses and

Analysis) (Govindaraju et al., 2000; Tkac, 2008).

The unsuppressed water signal acquired from the VOI was used to remove residual eddy current effects and to reconstruct the

phased array spectra (Natt et al., 2005). To improve comparability across spectra, the water component of the spectra was then

removed before single scan spectra were summed from 32 channels, corrected for frequency and phase variations induced by par-

ticipants’ motion, and then summed. LCModel analysis was performed on all spectra within the chemical shift range 0.5 to 4.2 ppm

(Provencher, 1993).

Reliable LCModel fits were achieved in 20 of the 26 participants and metabolite concentration relative to total Creatine concen-

tration were estimated, relative to unsuppressed water spectrum acquired from the same VOI. In the remaining 6 participants the

relative GABA quantification was either unreliable or inestimable due to lipid contamination and broader linewidth. The lipid contam-

ination could be observed directly in the spectral range 1.9-0.5 ppm (Figures S3A and S3B). The broader linewidth, quantified using

Full-Width at Half Maximum (FWHM), was significantly higher in these six participants relative to the 20 participants included for anal-

ysis (two sample t test: t24 = 3.73, p = 0.001, Figure S3C). Participants with inestimable GABA were excluded from all data analyses

that included MRS data.

All measured metabolites included in the analysis had Cramér–Rao lower bound (CRLB) values % 50% (Bedna�rı́k et al., 2015).

Relative to baseline concentrations (‘Before tDCS’), the change in relative GABA (Figure 4E), relative glutamate (Figure 4F), and other

metabolite concentrations (Table S1) were compared across conditions using a two-tailed paired t test where the direction of the

effect was unknown and a one-tailed paired t test in instances where the direction of the effect was predicted from previous data

(i.e., for the change in relative GABA). Thus, all t tests were performed using within-subject comparisons.

tDCS
Immediately before and during Block 2 of the scan task, participants in groups 1, 2 and 3 received tDCS using aDC-Stimulator (Eldith)

which delivered a 1mA current to the brain. For group 1, the current was delivered while participants were inside the 7TMRI scanner.

For groups 2 and 3, the current was delivered outsider the scanner using a double-blind procedure (see below). To ensure that the

tDCSwas suitable for use in the 7T scanner, we used two 53 7 cm2MRI compatible electrodes (Easycap) fittedwith 5 kOhm resistors

to minimize the risk of heating or eddy current induction. Using high-chloride EEG electrode gel (Easycap) as a conducting paste, the

anodal electrode was placed on the scalp above the region of right temporal cortex previously identified as encoding the association

between paired shapes (Figures 4A–4B), approximately at the 10–20 T6 node location. The cathodal electrode was placed over the

contralateral supraorbital ridge (Figures 4A and S5). For participants in group 1, a cod-liver oil capsule was taped to the anodal elec-

trode, immediately underneath the resistor, to make the electrode MR-visible and allow for its location to be mapped onto the

anatomical brain surface (Figure 4C). For all participants, the impedance of tDCS was checked prior to stimulation. In group 1,
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this impedance check was performed before participants entered the scanner and again once the participant was lying inside the

bore of the magnet with extension leads connected to the stimulator. For participants in group 1 and 2, tDCS was delivered using

a 10 s ramp-up of the current, which was then held at 1 mA current for a total of 20 min, before a 10 s ramp-down. For participants

in group 3, sham stimulation involved mimicking the prickling sensation of stimulation using a 10 s ramp-up of current, turning stim-

ulation off for 20minutes and then repeating the 10 s ramp-up. For participants in all groups 1-3, the stimulation protocol commenced

10 min prior to the start of the second fMRI scan task (Figure 1F). At the end of the experiment, participants in groups 2 and 3 were

debriefed: they were informed that they may have received sham stimulation and were asked to declare whether they believed they

had received real or sham stimulation. The blinded researcher (R.K., see below) also declared whether they believed the participants

had received real or sham stimulation.

Double-blind procedure for anodal/sham tDCS
Participants in groups 2 and 3 were first recruited, before being randomly assigned to the anodal (group 2) or sham (group 3) stim-

ulation condition using a random number generator. Randomization was performed by a researcher (H.B.) who was not involved in

recruitment. Behavioral training, electrode placement, the scan tasks, surprise memory test and debrief were carried out by a

researcher blind to the stimulation condition (R.K.). tDCS was delivered by a researcher who was aware of the stimulation conditions

and whowas not involved in any of the behavioral training or assessment (H.B.). Analysis of participants responses during the debrief

indicated that 55%of participants in group 2 (‘tDCS’) and 75%of participants in group 3 (‘sham’) believed they received anodal tDCS

stimulation. The blinded researcher believed that 55% of participants in group 2 (‘tDCS’) and 45% of participants in group 3 (‘sham’)

received anodal tDCS stimulation.

fMRI data analysis
For all MRI datasets obtained from participants in group 1, pre-processing was carried out using SPM12 (https://www.fil.ion.ucl.ac.

uk/spm/). Two participants were excluded from the fMRI analysis due to poor performance on the fMRI scan task (< 80%accuracy on

one or more of the two task blocks), suggesting that they may have fallen asleep during the task. For the remaining 24 participants

images were corrected for signal bias, realigned to the first volume, corrected for distortion using field maps, normalized to a stan-

dard EPI template and smoothed using an 8-mm full-width at half maximumGaussian kernel. To remove low frequency noise from the

preprocessed data, a high-pass filter was applied to the data using SPM120s default settings. For each participant and for each scan-

ning block, the resulting fMRI data was analyzed in an event-related manner using two different general linear models (GLMs), one

designed for univariate analyses and a second designed for multivariate analyses. In both GLMs explanatory variables used a delta

function to indicate the onset of a trial and were then convolved with the hemodynamic response function.

The first GLM, used to analyze univariate BOLD effects, was applied to data from each of the two scan task blocks separately, and

to data from both scan task blocks together. In the design, a total of 46 different explanatory variables were included per block. 42 of

these explanatory variables were included to account for each possible pair of visual stimuli (‘1’ and ‘20, ‘1’ and ‘30 etc.) in each of the

two background contexts (i.e., memory 1 or memory 2), regardless of the order in which the two stimuli were presented within the

pair. An additional 4 explanatory variables were used to model trials that included repeating stimuli or trials were ‘odd-ball’ stimuli

had been presented in each of the two background contexts (i.e., memory 1 or memory 2). Finally, for each task block an additional

6 scan-to-scan motion parameters produced during realignment were included in the GLM as additional nuisance explanatory vari-

ables to account for motion-related artifacts.

Using the output of this first GLM for the univariate analysis, the following three principal contrasts of interest were assessed. First,

to measure cross-stimulus adaptation as an index for expression of directly associated stimuli (Figure S4), the contrast of interest

involved comparing fMRI BOLD signal for trials with pairs of stimuli separated by more than one link across both memories (‘unas-

sociated’; i.e., memory 1 and memory 2 links 2-7, 5-7, 2-4, 1-5, 1-4, 2-5, 4-7, 3-6, 1-6, 1-3) with fMRI BOLD signal for trials with pairs

of stimuli separated by one link in both memories (‘associated’; i.e., memory 1 and memory 2 links 1-2,4-5,7-1). Second, to measure

cross-stimulus adaptation as an index for memory interference (Figures 5 and 6A–6B), the contrast of interest involved comparing

fMRI BOLD signal for pairs of stimuli separated by more than one link across both memories (‘unassociated’; i.e., memory 1 and

memory 2 links 2-7, 5-7, 2-4, 1-5, 1-4, 2-5, 4-7, 3-6, 1-6, 1-3) with fMRI BOLD signal for pairs of stimuli separated by more

than one link in the current context, but only one link in the alternative context (‘hidden’; i.e., memory 1: links 3-5, 4-6, 2-6, 3-7;

memory 2: links 3-4, 5-6, 2-3, 6-7). Third, to measure the BOLD response to trials where there was an opportunity for memory inter-

ference (Figures 2A–2C, 2H, and 6C), the contrast of interest involved comparing fMRI BOLD signal for pairs of stimuli that shared

the same topological relationship across the two memories (‘stable’, i.e., links that did not include stimuli 3 or 6) with fMRI BOLD

signal for pairs of stimuli that had a different topological relationship across the two memories (‘unstable’; i.e., links that included

stimuli 3 or 6).

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI statistics and ROI specification
From the first GLM, the contrast images of all participants were entered into a second-level random effects analysis. To test for fMRI

cross-stimulus suppression effects in an unbiased fashion, parameter estimates obtained from the relevant GLMwere extracted from
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an independent region of interest (ROI) (see below). Paired t tests were used to assess differences in the main effect between ses-

sions. When testing evidence for replication of our previous findings (Barron et al., 2016a) a one-tailed test was used. In all other

instances, two-tailed tests were used. The significance level was set to p < 0.05.

To assess fMRI cross-stimulus suppression effects in the neocortex, three ROIs were defined. To assess evidence for replication of

previously published results (Figure S4), an independent ROI was defined using the previously published dataset, after thresholding

the contrast of interest at p < 0.01 uncorrected (Figures 4B and S4B) (Barron et al., 2016a). To assess evidence for memory interfer-

ence, an ROI was defined from the peak average location of the anodal tDCS electrode. This was estimated using the T1 scan to

identify the location of the cod-liver oil capsule taped immediately underneath the resistor of the anodal electrode. For each partic-

ipant, the ventral-dorsal coordinate was taken from the upper edge of the cod-liver capsule. The medial-lateral coordinate was pro-

jected 20mm from the lateral surface, consistent with the peak medial-lateral coordinate of previously published cross-stimulus sup-

pression induced by application of tDCS (Figure 4B) (Barron et al., 2016a). For each participant, an 8mm sphere was then drawn

around the identified coordinate, and the sphere was warped to a standard EPI template. Across individuals the peak average

ROI was calculated (Figure 4C). To perform SVC for multiple comparisons, a 10mm sphere was drawn around the peak of the group

average tDCS electrode location (Figure 4D) and statistical significance assessed using peak-level FWE correction at p < 0.05.

Capitalizing on variance across participants within this larger ROI, the extracted fMRI cross-stimulus suppression measures were

correlated with changes in GABA and behavior (Figure 5B–5D).

To assess changes in BOLD signal in the hippocampus (Figure 2), an anatomical hippocampal mask was used to perform SVC for

multiple comparisons (Figure 2G), with peak-level FWE correction at p < 0.05.

Representational Similarity Analysis
The second GLM was used to assess multivariate effects. In this GLM each trial was modeled as a unique explanatory variable. All

trials across Block 1 and 2were included. In addition, 6 scan-to-scanmotion parameters produced during realignment were included

in the GLM as additional nuisance explanatory variables to account for motion-related artifacts. The output of this GLM was used to

estimate the representational similarity between each trial, using the representational similarity analysis toolbox (RSA) (Kriegeskorte

et al., 2008; Nili et al., 2014). The dissimilarity between the response pattern elicited on each trial was estimated using the Mahala-

nobis distance (Walther et al., 2016), and expressed using correlation distances (1-r). For each participant, the dissimilarity value for

the response patterns associated with each trial were represented in each cell of a representational dissimilarity matrix (RDM). Thus,

for each stimulus, all trials containing the stimulus were included to estimate a stimulus representation, e.g., trials contributing to the

representation of stimulus 1 in memory 1 included all pairs of stimuli shown on a yellow background that included stimulus 1, i.e., 1-1,

1-2, . 1-7. To estimate summary statistics, the Kendall rank correlation coefficient was estimated between the participant’s RDM

and a model RDM (Figures S2D–S2F). These summary statistics were then tested at the group level using a two-sided Wilcoxon

signed-rank test across participants. This indicated whether the difference in correlation coefficients between two conditions was

greater than zero. This approach allowed for significant within stimulus exemplar discrimination (Figures S2H–S2I). To estimate a

confusion matrix across memory 1 and 2 (Figure 3A), the RDM for each participant was sorted by stimulus type and average repre-

sentational dissimilarity measure within and between each stimulus was calculated to generate a 7x7 matrix.

Correlations between fMRI, behavioral and MRS data
To assess the relationship between hippocampal BOLD signal and behavior, a Pearson’s correlation was used. Due to outlier data

points in the fMRI cross-stimulus suppressionmeasure (see Figures 5B–5D, 6A–6B, and S4H), Spearman’s rank correlation was used

to assess the relationship between fMRI cross-stimulus suppression and changes in GABA or behavior. Correlations were plotted

between standardized residuals, using a partial correlation method to account for unwanted variance attributed to other variables,

such as participants’ performance on the training task. The partial correlation involved using ordinary-least-squares multiple regres-

sion to estimate the residuals:

Yi =b0 +b1xi + εi and Yj = co + c1xj + εj

where Yi and Yj represent the variables for which there is hypothesized to be a predictive relationship (e.g., neural and behavioral

measures), xi and xj represent ‘nuisance’ variables for which variance is to be accounted (e.g., learning accuracy shown in Figures

S1C and S1D), b0 and c0 represent the intercepts, b1 and c1 represent the regression coefficients on the ‘nuisance’ variables. The

partial correlation coefficient was then estimated as the correlation between the resulting residuals, with themean of the original vari-

ables added to the standardized residuals to aid interpretability: (εi + b0 + mean(Yi)) and (εj + c0 + mean(Yj)).

A permutation test was used to quantify the difference in correlation between behavioral performance and hippocampal BOLD in

Block 1 versus Block 2. To estimate a null distribution subject labels for hippocampal BOLD signal were permuted 10,000 times,

before being correlated with behavioral performance. The difference in correlation between the Block 1 and Block 2 correlations

was then computed for all 10,000 examples. The true difference between Block 1 and Block 2 correlations was compared against

the null distribution to generate a p value (Figure S6D).
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DATA AND SOFTWARE AVAILABILITY

Upon publication MATLAB scripts for reproducing all figures will be made available on GitHub (https://github.com/rskool/meminf/

RK_00001). Upon publication group t-stat images, anonymized subject-specific parameter estimates extracted from ROIs, and

relevant experimental parameters that support the findings of this study will be made available on GitHub (https://github.com/

rskool/meminf/RK_00001). The accession number for data reported in this paper is [RK_00001].
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Figure S1| Training task and surprise memory test, related to Figure 1 
A-B) The training task performed by participants on day 1 and 2 of the task involved two phases. Phase 1 involved 
a passive task (shown here) while phase 2 involved an active task (shown in Fig. 1D-E). On each trial of phase 1 
of the training task participants were shown a pair of associated stimuli for 3 s duration. The stimulus that 
appeared on the left-hand side of the screen was randomised. Each pair of stimuli was presented 4 times in total 
and the order in which pairs of associated stimuli were presented was randomised across trials. The background 
colour on the screen provided a contextual cue for each day of the training task and was either yellow (A) or 
blue (B). Participants were required to passively observe the pairs of stimuli and instructed to try to learn the 
associative pairings. C-D) Percentage learning accuracy during phase 2 of the training task (Fig. 1D-E) for the four 
different groups of participants (see Methods) on day 1 (C) and day 2 (D). Shown: mean ±SEM. Some participants 
got tired during training and showed a reduction in task performance during the final and/or penultimate task 
block. For this reason, ‘learning accuracy’ was estimated as the average performance across trials on each 
participant’s highest performing task block. On day 1 there was no significant difference in learning accuracy 
between any pair of the four experimental groups. However, on day 2, a significant difference in learning 
accuracy was observed between the ‘sham’ group and the ‘MRI’ group (t44=2.12, p=0.040), but not between any 
other groups. This difference occurred by chance as the allocation of participants to the ‘tDCS’ and ‘sham’ group 
was double blinded. E) Accuracy on the surprise memory test on day 3 for the four different groups of 
participants. Shown: mean ±SEM. We observed a significant difference between groups in mean memory 
accuracy using a one-way ANOVA (mean accuracy: F82=6.54, p<0.001), and a significant effect of stimulation 
when using multiple regression to control for variation in learning accuracy and gender that occurred by chance 
across the four experimental groups (effect of stimulation on mean accuracy: t81=2.96, p=0.004).  Post-hoc t-
tests revealed significantly lower overall memory accuracy for participants who received tDCS and MRI relative 
to participants who received no intervention (‘MRI’ vs. ‘Behav’: t44=4.11, p<0.001), with a similar trend for 
participants who received tDCS without MRI ('tDCS' vs ‘Behav’: t38=1.91, p=0.064). However, there was no 
difference in performance between the ‘tDCS’ and ‘Sham’ groups (‘tDCS’ vs ‘Sham’: t38=0.02, p=0.986). Similar 
results were obtained when using multiple regression to control for variation in learning accuracy and gender 
that occurred by chance between the four experimental groups ('MRI' vs ‘Behav’: t41=5.17, p<0.001; 'tDCS' vs 
‘Behav’: t35= 2.19, p=0.035; ‘tDCS’ vs ‘Sham’: t35=0.568, p=0.574). F) Percentage learning accuracy during phase 
2 of the training task (Fig.1D-E) for the four different groups of participants (see Methods), split by training block 
for both day 1 (upper row) and day 2 (lower row). Shown: mean ±SEM. Performance accuracy is shown for the 
final 5 training blocks as all participants were trained until they completed at least 5 training blocks (see 
Methods).   
 
 
 
 
 
 
 
 



 
Figure S2 | Example of fMRI partial volume and RSA models and additional analyses, related to Figures 2-3 
A-C) To increase SNR in brain regions for which we had strong prior hypotheses, we restricted the fMRI sequence 
to a partial volume, thus allowing for an increase in the number of measurements acquired due to shorter TR. 
The partial volume covered occipital and temporal cortices. Here, brain regions included in the partial volumes 
of all participants are shown for the (A) sagittal, (B) coronal and (C) axial plane. Orientation: neurological. D-F) 
Model representational dissimilarity matrices (RDMs) used to assess evidence for: (D) Within versus between 
memory dissimilarity, with results shown in Fig. 3B; (E) Between memory dissimilarity for stimuli that change 
their relational position across memory 1 and 2 (i.e. stimuli 3 and 6 ) relative to all other stimuli (1,2,4,5,7), with 
results shown in Fig. 3C; (F) Within versus between stimulus dissimilarity, with results shown in Fig. S2I. G) The 
RDM for each participant was correlated with a model RDM shown in Fig. S2D to test evidence for pattern 
separation of hippocampal representations by memory. All trials with either a 3 or 6 stimulus were excluded 
from the analysis. Across participants, significant representational similarity within memory 1/2 versus between 
memory 1 and 2 was observed (Wilcoxon sign rank test: Z23=2.46, p=0.014). Note: the dissimilarity of a trial to 
itself was excluded from the analysis. ‘a.u.’ refers to ‘arbitrary units’. H) ROI shown in Fig. 4D, centered on peak 
tDCS electrode location (see Methods). Orientation: neurological. I) For each participant, we assessed the 
dissimilarity in activity patterns between- versus within-stimulus exemplars in memory 1 and in memory 2 (e.g. 
[1 to 2, 1 to 3, 1 to 4, etc] minus [1 to 1, 2 to 2, 3 to 3, etc]), and observed a significant positive difference within 
the aLOC ROI shown in H (between – within stimulus exemplars: Wilcoxon sign rank test: Z23=2.75, p=0.003). 
‘a.u.’ refers to ‘arbitrary units’. Note: the dissimilarity of a trial to itself was excluded from the analysis.  
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Figure S3 | MRS spectra, subject inclusion, and additional analyses, related to Figure 4 
A) Average spectra for all participants data included in MRS analysis (shown: mean ±SEM). Chemical shifts of the 
three GABA peaks are indicated using green stars. B) Average spectra for those participants who were rejected 
from the MRS analysis (shown: mean ±SEM). Data from these participants were noisy, and had lipid 
contamination in the region 1.9-0.5ppm (i.e. in the region of the lowest GABA peak). This resulted in either 
inestimable or highly unreliable GABA estimates. Chemical shifts of the three GABA peaks are indicated using 
green stars. C) Relative to participants included in the MRS analysis (shown in A), those participants rejected 
from the MRS analysis (shown in B) had broader linewidth, estimated using full-width at half maximum (FWHM) 
using LCModel (two-sample t-test: t24=3.73, p=0.001) (shown: mean ±SEM). D) There was no significant change 
in the concentration of total Creatine (Cr+PCr) across the 3 MRS measurements (‘Before tDCS’ – ‘During’, 
t19=0.26, p=0.799; ‘Before tDCS’ – ‘Post task’ t19=1.37, p=0.186; shown: mean ±SEM). E-F) By assessing 
metabolite concentrations relative to total Creatine and by comparing the concentration of GABA/glutamate 
between two time points in a within subject manner, our analyses (Fig. 4E-F) controlled for variation in voxel 
tissue and CSF in the MRS voxel used across subjects and thus mitigated the need for partial volume correction. 
To check that the proportion of CSF in the MRS voxel did not affect water signal referencing in LCModel we 
reassessed the change in the concentration of GABA and glutamate across the 3 MRS sessions, after accounting 
for the proportion of CSF. We show that our results shown in Fig. 4E-F remain unchanged: E) A significant 
reduction in relative GABA was observed during tDCS (‘Before tDCS’ – ‘During tDCS’, t19= 2.24, p=0.019, shown: 
mean ±SEM); F) A significant increase in relative glutamate was observed after the second scan task (‘Post-task’ 
– ‘Before tDCS’, t19= 2.56, p=0.019, shown: mean ±SEM).   
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Figure S4 | Replication of previous findings (Barron et al., 2016): Otherwise dormant associative memories 
are re-expressed during periods of EI imbalance, related to Figure 4-5 
‘XSS’ indicates cross-stimulus suppression; ‘b’ indicates block of fMRI acquisition; ‘t’ indicates timepoint of MRS 
acquisition, as shown in Fig. 1F. A) When participants performed the scan task in EI imbalance, we predicted an 
increase in cross-stimulus suppression (‘XSS’) on trials where pairs of directly associated stimuli were presented 
(e.g. stimuli 1 and 2), relative to trials where pairs of unassociated stimuli were presented (‘Control’, e.g. stimuli 
1 and 5). The difference between ‘Control’ and ‘XSS’ trials could be indexed using the BOLD signal to provide a 
measure of cross-stimulus suppression. B) To test replication of our previously published result (Barron et al., 
2016a) (shown in Fig. 4B), we used an independently defined ROI in aLOC, taken from our previous dataset (Fig. 
4B, thresholded at p<0.01, see Methods). Orientation: neurological.  C) For directly associated stimuli across 
both memory 1 and 2, extracted parameter estimates (shown: mean ±SEM) revealed a significant increase in 
fMRI cross-stimulus suppression during brain stimulation, and significant fMRI cross-stimulus suppression during 
brain stimulation (within the ROI shown in B: ‘Control’ – ‘XSS’ for Block 2 – Block 1: t23=1.73, p=0.049; for Block 
2: t23=2.31, p=0.015). Thus, replicating our previous findings (Barron et al., 2016a), these results show that 
reducing GABAergic tone increases repetition suppression between associated stimuli. D) Between directly 
associated stimuli in memory 1, extracted parameter estimates (shown: mean ±SEM) revealed no significant 
change in fMRI cross-stimulus suppression during brain stimulation (within the ROI shown in B: ‘Control’ – ‘XSS’ 
for Block 2 – Block 1: t23=0.23, p=0.823). E) Between directly associated stimuli in memory 2, extracted 
parameter estimates (shown: mean ±SEM) revealed a significant increase in fMRI cross-stimulus suppression 
during brain stimulation, and significant fMRI cross-stimulus suppression during brain stimulation (within the 
ROI shown in B: ‘Control’ – ‘XSS’ for Block 2 – Block 1: t23=2.29, p=0.016; Block 2: t23=2.92, p=0.004). F) Extracted 
parameter estimates from E split into the ‘Control’ and ‘XSS’ conditions, as described in A (shown: mean ±SEM). 
G) T-statistic map for cross-stimulus suppression between directly associated stimuli in memory 2 during Block 
2 shown in E-F, thresholded at p<0.01 uncorrected for visualization. Significant cross-stimulus suppression for 
directly associated elements of memory 2 could also be observed in Block 2 within a 10mm radius sphere defined 
around the peak tDCS electrode location for all participants (Fig. 4D, see Methods) (t23=4.17, p=0.010, peak-level 
FWE corrected using SVC). Orientation: neurological.  H) There was a significant positive correlation between 
the change in relative GABA (‘Before tDCS’ – ‘During tDCS’) and the increase in fMRI cross-stimulus suppression 
(Block 2- Block 1) observed in the ROI shown in Fig. 4D, averaged across both memory 1 and 2 (Spearman 
correlation: r17=0.52, p=0.028, after accounting for changes in glutamate, see Methods). Thus, the decrease in 
relative GABA during application of anodal tDCS positively predicted the increase in cross-stimulus suppression 
between directly associated stimuli in memory 1 and 2. ‘b’ indicates block for fMRI acquisition as shown in Fig. 
1F. ‘t’ indicates ‘timepoint’ of MRS measurement acquisition, as shown in Fig. 1F. I) Across memory 1 and 
memory 2 (Fig. 1B-C), 3 of the 7 associations remained the same: those between stimuli 1 and 2, 1 and 7 and 4 
and 5. Memory accuracy on the surprise memory test (shown: mean ± SEM) for these stable associations was 
significantly different between memory 1 (day 1, yellow) and memory 2 (day 2, blue), with higher memory 
accuracy when participants recalled these associations in the more recent memory 2 (paired t-test: t25=2.16, 
p=0.040). 
 
 



 

 
 
Figure S5 | Simulated effect of tDCS across the brain and effect of cathodal stimulation on left prefrontal 
cortex (PFC), related to Figures 4-5 
A-D) Using open source software, ROAST, (Huang et al., 2017) we used a current model to estimate the electric 
field induced by tDCS across neocortex for our electrode configuration. To simulate the effect of the anodal 
electrode, a 1mA current was injected into the right aLOC. To simulate the effect of the cathodal electrode, a -
1mA current injected into the left prefrontal cortex. This stimulation configuration gave rise to an elevated 
electric field (V/m) under both the anodal and cathodal electrodes. (A) Dorsal surface. (B) Right hand 
hemisphere, including region under the anodal electrode. (C) Anterior view, showing region under cathodal 
electrode. (D) Ventral surface. E-F) Our cross-stimulus suppression contrast for memory interference did not 
show any suprathreshold voxels (defined as p<0.001, uncorrected) underneath the cathodal electrode. This 
suggests that the effects reported from aLOC (Fig. 5) cannot be explained by downstream effects of cathodal 
stimulation near to left PFC. However, to check that subthreshold fMRI effects in PFC (defined as voxels surviving 
p<0.01 uncorrected) cannot explain the reported effects in aLOC (Fig. 5) we assessed the relationship between 
these two brain regions. (E) ROI in PFC, defined from a contrast for our cross-stimulus suppression index for 
memory interference, thresholded at p<0.01 uncorrected. Orientation: neurological.  (F) The relationship 
between PFC and aLOC: parameter estimates were extracted from PFC (ROI shown in E) and from aLOC (peak 
average tDCS electrode location shown in Fig. 4C) during Block 2 of the fMRI scan task and the cross-stimulus 
suppression index for memory interference was assessed. Cross-stimulus suppression in PFC did not predict the 
measure for memory interference in aLOC (r23=0.25, p=0.240). This suggests that cross-stimulus suppression 
effects reported in aLOC (Fig. 5) cannot be explained by downstream effects of cathodal stimulation near to left 
PFC. ‘XSS’ indicates cross-stimulus suppression; ‘b’ indicates block for fMRI acquisition, as shown in Fig. 1F. 
 

 



 
Figure S6 | Memory interference effects in memory 1 and 2, related to Figures 5-6 
A) Cross-stimulus suppression was used to index the change in memory interference before and during 
application of tDCS, as shown in Fig. 5. Across both memory 1 and 2 there was a trend towards an increase in 
the cross-stimulus suppression index for memory interference (paired t-test: t23=1.79, p=0.087) (shown: mean 
±SEM). B) As shown in Fig. 5E: within an ROI defined from the peak average tDCS electrode location shown in 
Fig. 4C, extracted parameter estimates for memory 1 (shown: mean ±SEM) revealed a significant increase in the 
fMRI cross-stimulus suppression measure for memory interference (‘Control’ – ‘XSS’, as shown in Fig. 5A) from 
Block 1 to 2 and during Block 2 alone (‘Control’ – ‘XSS’ for Block 2 – Block 1: t23=3.05, p=0.006; ‘Control’ – ‘XSS’ 
for Block 2: t23=3.00, p=0.006). C) Unlike for memory 1 shown in B and Fig. 5E-F, no significant change in the 
fMRI cross-stimulus suppression measure for memory interference was observed for memory 2 (t23=0.57, 
p=0.573, shown: mean ±SEM). D) During Block 1 but not Block 2 of the scan task hippocampal BOLD predicted 
subsequent behavioural performance on the surprise memory test (Fig. 2H and Fig. 6C). To assess the 
significance of the difference in correlation coefficient, a null distribution of 10,000 samples was estimated using 
a permutation test (see Methods). Here, the null distribution can be observed in green and the difference in 
correlation between block 1 and 2 is indicated by the red arrow.   
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Table S1:  
 

Metabolite Before tDCS During tDCS Post-task 
Alanine 1.39 ± 0.42 1.52 ± 0.44 1.31 ± 0.45 

Ascorbate 1.11 ± 0.17 1.29 ± 0.18 1.22 ± 0.17 
Aspartate 3.18 ± 0.34 2.78 ± 0.34 2.26 ± 0.27 

Glycerophosphorylcholine 0.93 ± 0.07 0.86 ± 0.08 0.94 ± 0.09 
Phosphorylcholine 0.75 ± 0.06 0.83 ± 0.06 0.76 ± 0.07 

Creatine 4.96 ± 0.14 4.97 ± 0.15 4.91 ± 0.14 
Phosphocreatine 3.04 ± 0.14 3.03 ± 0.15 3.09 ± 0.14 

GABA 4.77 ± 0.34 4.18 ± 0.45 4.53 ± 0.39 
Glucose 2.22 ± 0.18 2.31 ± 0.21 2.31 ± 0.15 

Glutamine 7.30 ± 0.37 7.36 ± 0.42 7.04 ± 0.36 
Glutamate 9.26 ± 0.26 9.39 ± 0.22 9.75 ± 0.26 

Glutathione 0.89 ± 0.08 0.77 ± 0.11 0.79 ± 0.10 
Inositol 7.27 ± 0.15 7.19 ± 0.14 7.19 ± 0.16 
Lactate 1.10 ± 0.20 1.18 ± 0.15 0.89 ± 0.14 

N-acetylaspartate (NAA) 13.25 ± 0.37 13.19 ± 0.34 13.28 ± 0.39 
N-acetylaspartylglutamate (NAAG) 2.34 ± 0.11 2.29 ± 0.12 2.31 ± 0.10 

Phosphoethanolamine 1.91 ± 0.17 1.97 ± 0.15 1.95 ± 0.19 
Scyllo-Inositol 0.18 ± 0.03 0.17 ± 0.03 0.17 ± 0.03 

Taurine 0.65 ± 0.08 0.53 ± 0.08 0.51 ± 0.07 
 
Table S1 | Average concentration of all metabolites measured using MRS, related to Figure 4 
For each metabolite, the concentration was measured relative to Creatine and then averaged across participants 
(shown: mean, ± SEM). As reported in the main text, a significant decrease in the concentration of GABA was 
observed during tDCS, and a significant increase in the concentration of glutamate observed after the second 
task block (Fig. 4E-F). Of the other metabolites measured (n=17), only one showed a significant change in 
concentration across the three MRS measurements: the concentration of aspartate significantly decreased after 
the second task block (‘before tDCS’ – ‘post-task’, t19=4.29, p<0.001).  
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