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A B S T R A C T

Defining spatial synchronisation of pathological beta oscillations is important, given that many theories linking 
them to parkinsonian symptoms propose a reduction in the dimensionality of the coding space within and/or 
across cortico-basal ganglia structures. Such spatial synchronisation could arise from a single process, with 
widespread entrainment of neurons to the same oscillation. Alternatively, the partially segregated structure of 
cortico-basal ganglia loops could provide a substrate for multiple ensembles that are independently synchronized 
at beta frequencies. Addressing this question requires an analytical approach that identifies groups of signals with 
a statistical tendency for beta synchronisation, which is unachievable using standard pairwise measures. Here, 
we utilized such an approach on multichannel recordings of background unit activity (BUA) in the external 
globus pallidus (GP) and subthalamic nucleus (STN) in parkinsonian rats. We employed an adapted version of a 
principle and independent component analysis-based method commonly used to define assemblies of single 
neurons (i.e., neurons that are synchronized over short timescales). This analysis enabled us to define whether 
changes in the power of beta oscillations in local ensembles of neurons (i.e., the BUA recorded from single 
contacts) consistently covaried over time, forming a “beta ensemble”. Multiple beta ensembles were often present 
in single recordings and could span brain structures. Membership of a beta ensemble predicted significantly 
higher levels of short latency (<5 ms) synchrony in the raw BUA signal and phase synchronisation with cortical 
beta oscillations, suggesting that they comprised clusters of neurons that are functionally connected at multiple 
levels, despite sometimes being non-contiguous in space. Overall, these findings suggest that beta oscillations do 
not comprise of a single synchronisation process, but rather multiple independent activities that can bind both 
spatially contiguous and non-contiguous pools of neurons within and across structures. As previously proposed, 
such ensembles provide a substrate for beta oscillations to constrain the coding space of cortico-basal ganglia 
circuits.

1. Introduction

Beta oscillations (15 to 35 Hz) across the primary motor cortex and 
basal ganglia are enhanced during Parkinson’s disease (PD) (Brown, 
2007; Hammond et al., 2007). Effective therapies for PD, such as deep 
brain stimulation (DBS) and levodopa administration, reduce beta 
power and the degree of suppression correlates with improvement in 
bradykinetic symptoms (Brown et al., 2001; Kuhn et al., 2008). Beta 
oscillations are not stationary, but rather occur in “bursts” that consist of 
transient increases in the instantaneous power of basal ganglia local 

field potentials (LFPs) or the electrocorticogram (ECoG) (Feingold et al., 
2015; Cagnan et al., 2019). OFF levodopa, beta bursts increase in 
duration and amplitude (Tinkhauser et al., 2017a). The reduction in the 
number of beta bursts and suppression of long-duration bursts by 
treatment (e.g. levodopa or DBS) are correlated with the degree of 
improvement in motor performance (Little et al., 2013; Tinkhauser 
et al., 2017a).

A key question in the field of PD pathophysiology is why enhanced 
beta oscillations lead to motor symptoms. Several authors have pro-
posed that the level of beta synchronisation influences the 
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dimensionality of the coding space in the cortico-basal ganglia circuits 
(Engel et al., 2001; Brittain et al., 2014). In this framework, individual 
neurons or small ensembles of neurons should have a relatively large 
degree of independence to function optimally. This is supported by the 
low-level of temporal correlation between basal ganglia neurons in 
awake animals (Raz et al., 2001). Short periods of enhanced synchro-
nisation (<1 s), however, could be utilized to hold a population of 
neurons in a given state (Engel et al., 2001; Brittain et al., 2014). In the 
healthy motor system, transient periods of synchronisation could sup-
port muscle synergies to hold part of the limb still (Bracklein et al., 
2022). However, if these periods of synchronisation become abnormally 
sustained, they could impair dynamic processing and execution of the 
associated behaviour.

Beta synchronisation can occur in both temporal and spatial di-
mensions. Detailed examination of beta bursts has demonstrated that 
beta oscillations in the parkinsonian brain are pathologically extended 
in time (Tinkhauser et al., 2017b; Tinkhauser et al., 2017a). The length 
of the cortical (ECoG) burst predicts duration of cortico-basal phase- 
locking at the level of single- and multi-units (Cagnan et al., 2019; 
Baaske et al., 2020) suggesting that the elongation of beta bursts in LFP 
is representative of oscillation at the level of neuronal output (Cagnan 
et al., 2019). Given that field signals (EEG/ECoG/LFP) are the result of 
temporally synchronized synaptic potentials across neurons (Buzsaki 
et al., 2012), sustained bursts also indicate enhanced spatial synchro-
nisation at a local level around the electrode. However, any spatial 
synchronisation between different field potentials recorded within or 
across structures, indicating coupling over larger spatial scales, will be a 
composite of volume conduction, the reference configuration and 
physiological coupling. LFP/ECoG-based analyses will thus provide only 
superficial insights into spatial synchronisation at the level of neuronal 
populations.

With respect to unit activity, the beta coherence between the spiking 
of pairs of units in the rodent GP decreases with the distance between the 
recorded pair (Mallet et al., 2008b). However, neurons in the cortex, 
basal ganglia and thalamus are clustered into hundreds of semi- 
independent pathways that may not conform to simple gradients in 
one or more anatomical plane (Hunnicutt et al., 2016; Foster et al., 
2021). Neurons in a given brain structure could divide bimodally into 
populations that always do or do not engage with the same unified 
process. Alternatively, there could be independent assemblies of neu-
rons that are synchronized at beta frequencies at different times. To 
distinguish between these scenarios requires analyses of the spatio-
temporal dependence of the synchronisation of neuronal output using a 
method that does not rely on signals being spatially contiguous and that 
can detect different ensembles of neurons that are independent of one 
another.

Here we employed an analytical framework using principal compo-
nent and independent component analyses, commonly used to define 
groups of neurons with a tendency to co-fire over short-timescales (i.e. 
neural ‘ensembles’) (Lopes-dos-Santos et al., 2011; Lopes-dos-Santos 
et al., 2013; van de Ven et al., 2016). We applied this approach to 
multichannel background unit activity (BUA) recorded in 6-OHDA- 
lesioned rats in the external globus pallidus (GP) and subthalamic nu-
cleus (STN) to define features of the spatiotemporal synchronisation of 
pathological beta oscillations. The results show that multiple, indepen-
dent ensembles of neurons are coordinated by the temporal dynamics of 
ongoing beta oscillations, and that neurons comprising these ‘beta en-
sembles’ can be distributed across brain structures.

2. Methods

2.1. Parkinsonian rats

This study uses data from Mallet et al., 2008a. Extracellular re-
cordings were made using multichannel silicon probes in the GP and 
STN of urethane-anaesthetised Sprague-Dawley rats (n = 15) rendered 

parkinsonian by 6-OHDA-lesioning. 6-OHDA lesioning was carried out 
under anaesthesia by injecting 1 microL of 6-OHDA 1.2–1.4 mm lateral 
and 4.1 mm posterior to Bregma and 7.9 mm ventral to the dura. Ani-
mals that recovered successfully and were deemed to have been effec-
tively lesioned were used for electrophysiological recordings. Lesions 
were classified as effective if 15 days after lesioning on administration of 
apomorphine animals performed ≥ 90 contraversive rotations in 20 
min. Recordings were made on a pair of probes, each with 16 electrodes 
arranged in a single vertical plane separated by 100 μm. In some re-
cordings, one probe was in the GP and one in the STN (n = 7/45 re-
cordings) whereas, in others, probes made up of two shanks separated by 
500 μm were targeted to the GP (n = 38/45 recordings). The number of 
electrodes within targeted structures varied between recordings. Chan-
nels outside of the STN and GP were excluded from the analysis. Frontal 
ECoG recordings, ipsilateral to the lesion, were made simultaneously 
with those in the basal ganglia using a 1 mm-diameter screw above the 
frontal motor cortex referenced to a screw overlying the ipsilateral 
cerebellar hemisphere. Signals were recorded using a Power 1401 
amplifier and Spike2 (Cambridge Electronic Design Limited) at a sample 
rate of 16 kHz. Recording duration was on average 108.1 s +/− 6.7 s. 
Following recordings animals were euthanised and fixed by transcardial 
perfusion.

For Supplemental Fig. 5, 8 recordings from unlesioned, control 
Sprague-Dawley rats (n = 5) were used. These animals went through the 
same recording procedure as parkinsonian rats in the absence of 6- 
OHDA lesioning. Recordings were again made with a pair of 16 elec-
trode probes, either both targeted to the GP (3/8) or one targeted to the 
GP and the other to the STN (5/8).

Data presented for the rest of the paper was from parkinsonian ani-
mals unless stated otherwise.

2.2. Power spectrum and coherence

The power spectrum and coherence were calculated as in Cagnan 
et al., 2019. ECoG and BUA were downsampled to 512 Hz and the 
coherence and power were calculated using the Neurospec toolbox 
(Halliday et al., 1995) with a FFT size of 512, unless otherwise stated. 
This gives a frequency resolution of 1 Hz. The log power spectrum for 
each channel was z-scored relative to the mean and std. of the high 
frequency activity (100-150 Hz).

2.3. Signal processing of background unit activity (BUA) and beta 
envelope

Background unit activity (BUA) was derived from raw probe re-
cordings in line with several previous studies (Moran and Bar-Gad, 
2010; Sharott et al., 2017; Cagnan et al., 2019; Nakamura et al., 
2021). First, we high-pass filtered at 300 Hz using a 3rd order Butter-
worth filter. Large spikes that could dominate the signal were identified 
by setting a threshold of mean ± 4 SD of the recording, and then a 4 ms 
segment around each instance crossing this threshold was removed and 
replaced with a randomly selected epoch which did not contain any 
spiking activity (Cagnan et al., 2019). Data was rectified and then low- 
pass filtered at 300 Hz using a third order Butterworth filter. BUA was 
downsampled to 1000 Hz for subsequent analysis. BUA was then filtered 
around ±5 Hz of the frequency of maximum coherence with the frontal 
ipsilateral ECoG in the beta frequency range (15-35 Hz), using a 2nd 
order Butterworth filter. For 85 % of channels the frequency of peak 
coherence with the frontal ipsilateral ECoG was within +/− 2 Hz of its 
peak power. The instantaneous envelope of beta oscillations was 
computed from the magnitude of the Hilbert transform of the beta 
filtered BUA. The change in the envelope of beta oscillations over 50 ms 
was calculated for each envelope-timeseries. The first and last 200 ms of 
data were removed to avoid any edge effects. On average, 2153.9 ±
893.5 (mean +/− std) data points (differenced envelope of beta filtered 
BUA) were computed per recording over the 45 recordings. All filtering 
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was conducted using zero phase lag filters.

2.4. Beta ensemble identification

Beta ensembles were identified using a two-step statistical process, 
which allowed us to identify groups of channels with correlated changes 
in beta envelope (Lopes-dos-Santos et al., 2011; Lopes-dos-Santos et al., 
2013; van de Ven et al., 2016).

2.4.1. Principle component analysis
A matrix Z was constructed where the z-scored change in the enve-

lope of beta filtered BUA over 50 ms for each channel made up a column. 
The matrix Z is, therefore, a T× N, where T is the number of 50 ms 
intervals that the change in envelope of the beta filtered BUA is calcu-
lated over and N is the number of channels.

Principal component analysis (PCA) was then applied to the matrix 
Z, with the intention of reducing the dimensionality from the number of 
channels to a smaller set of dimensions. To determine the number of 
significant patterns embedded in the data, each column of matrix Z had a 
random number of consecutive elements shifted from its end to its start, 
giving rise to the matrix Zshift. The data for each channel in the rows of 
Zshift, therefore, are no longer from the same point in time and any co- 
ordination detected arises due to chance. PCA was then performed on 
Zshift and the resulting eigenvalues were stored. This process was 
repeated 1000 times to produce a distribution of eigenvalues under null 
conditions. A significance threshold was set using a Bonferroni correc-
tion for the number of principle components tested. Given that the 
number of principal components is equal to the number of channels 
included in analysis, α = 0.05

N . If an eigenvalue from PCA on Z was 
greater than the value of the distribution of eigenvalues produced from 
the shifted data at the 100(1 − α) th percentile, the corresponding 
principal component was considered significant. Significant principal 
components were stored a N × S matrix, Psign, S is the number of sig-
nificant principal components.

2.4.2. Independent component analysis
To avoid constraining assembly patterns to be orthogonal and to 

allow the detection of higher-order correlations, independent compo-
nent analysis (ICA) is used (Lopes-dos-Santos et al., 2011; van de Ven 
et al., 2016). Data is first projected onto the subspace spanned by the 
significant principal components, followed by ICA to prevent the 
detection of spurious patterns. The unmixing matrix was expressed in 
the original basis. This results in a N × S matrix, where N is the number 
of channels and S is the number of significant principal components. The 
columns of this matrix are the weight vectors of the assembly pattern. 
The sign and size of these weights are arbitrary, so each column of V was 
scaled to unit length, and the sign of each column of V was set such that 
its largest vector weight was positive. The background unit recorded by 
a channel was said to be a member of an ensemble if its absolute weight 
in the assembly pattern was greater than the 80th percentile of absolute 
weights. ICA was carried out using the fastICA algorithm by Gävert et al. 
(https://research.ics.aalto.fi/ica/fastica/).

2.4.3. Raw-BUA ensembles
To determine the optimal input for the PCA-ICA pipeline, we 

repeated the above procedure but with raw-BUA instead of the change in 
the envelope of beta filtered BUA.

2.5. Eigenvalues and frequency

The relationship between the frequency band of BUA and the 
strength of the correlations identified by PCA were assessed by filtering 
the raw BUA at ±5 Hz using a second order Butterworth filter around a 
centre frequency varying from 8 Hz to 100 Hz in 1 Hz increments. The 
change in envelope was then computed and PCA was applied. The 

duration over which the change in envelope was computed was the 
period of the centre frequency, so the number of samples PCA was 
conducted on depended on the centre frequency of the oscillation. For 
instance, for filtering in the range 45-55 Hz, we would look at changes in 
envelope over 20 ms (1 / 50 Hz). However, the magnitude of eigen-
values that arise due to chance changes as a function of the number of 
samples included in PCA. To account for this, eigenvalues were 
normalized by subtracting and then dividing by the significance 
threshold for ensembles (see above) for that frequency band. The 
normalized eigenvalues therefore reflect proportionally how much 
greater an eigenvalue is than would be expected under null conditions.

The magnitude of eigenvalues and number of significant ensembles 
were compared when filtering the raw-BUA in the beta (15-25 Hz), theta 
(6-10 Hz), low-gamma (35-60 Hz) and high-gamma (60-90 Hz) fre-
quency bands (filtering was carried out using a 2nd order Butterworth 
filter). Again, the change in envelope was calculated over the period of 
the centre frequency of each frequency band (e.g. a 125 ms period was 
used for theta oscillations (6-10 Hz), whereas a 13 ms period was used 
for high gamma oscillations (60-90 Hz)). Gamma oscillations have a 
shorter period than beta and theta oscillations which would result in 
more data points for both the low and high gamma band. To avoid 
variability in the magnitude of eigenvalues due to the number of data 
points, changes in the envelope of beta and gamma band oscillations 
were randomly subsampled without replacement to match the same 
number of data points as were available for theta oscillations. As a result, 
the same number of data points were subjected to PCA for each fre-
quency band, making the eigenvalues comparable across conditions.

For both of the above analyses, we varied the timeframe used to 
measure the changes in envelope in line with the cycle duration corre-
sponding to the centre frequency of the band-pass filter. Our reason for 
scaling the analysis window in this way was due to the difficulty in 
interpreting changes in the envelope over periods less than the wave-
length of the filter frequency. Amplitude is often conceptualised as the 
peak to trough displacement of an oscillation. As such, it makes sense to 
think about amplitude as a property of at least one cycle of the oscilla-
tion. It is, therefore, most appropriate to measure changes in the 
amplitude at a timescale of one or more oscillation cycles.

2.6. Assembly expression strength

The expression strength of the assembly patterns was then calculated 
for each point in time (Lopes-dos-Santos et al., 2013; van de Ven et al., 
2016): 

Rs = z(t)TPsz(t)

where z(t) is a vector whose elements are the z-scored change in enve-
lope of beta filtered BUA over a sliding 50 ms window at time t for each 
of the channels and Ps is the outer product of each column of V (s = 1,…,

S): 

Ps = Vs
TVs 

after the elements in the leading diagonal are set to 0.
Setting the leading diagonal to 0 ensures that a change in the enve-

lope in the beta filtered BUA in a single channel with a large contribution 
to the assembly pattern is not sufficient to bring about high ensemble 
expression-strength. A threshold of 5 was set to define an ensemble 
activation, as has previously been used for ensembles of single units (van 
de Ven et al., 2016; Trouche et al., 2019). These activations were used as 
a trigger point for averaging the envelope and phase synchrony of beta 
oscillations.

2.7. Phase synchrony

The instantaneous phase of beta filtered (again using a centre fre-
quency determined by the frequency of maximum coherence with the 
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frontal ECoG +/− 5 Hz) BUA was derived from the Hilbert transform. 
The centre frequency of beta filtered BUA was highly consistent across 
channels within a recording. The centre frequency of 93 % of channels 
was within +/− 2 Hz of the median centre frequency for that recording. 
Phase synchrony index (PSI) was then computed for overlapping 50 ms 
intervals for pairs of channels a and b: 

PSI =

⃒
⃒
⃒
⃒
⃒

(
∑τ

k=1
exp
(
− i
(
∅a

k − ∅b
k
) )
) ⃒
⃒
⃒
⃒
⃒

/

τ 

where ∅a
k and ∅b

k is the instantaneous phase of the beta filtered BUA of 
channel a and b respectively, and τ is the number of samples that make 
up the 50 ms windows (Cagnan et al., 2019). While non-overlapping 
windows were used for PCA-ICA to avoid inflating the magnitude of 
eigenvalues, here an overlapping window allows for greater temporal 
resolution into the changes in phase synchrony.

2.8. Correlations between signals

Correlations between the change in beta envelope over 50 ms bins 
and cross correlations in the raw BUA in members and non-members 
were calculated across all permutations of pairs of channels and then 
averaged for each ensemble or recording. Similarly, when calculating 
the correlation or cross-correlation at a given distance, all permutations 
of pairs of channels at that distance were computed and then averaged 
for each ensemble or recording. Whether pairs were more positively 
correlated than expected due to chance (e.g., Fig. 1F) was assessed by 
circularly shuffling the change in the envelope of the beta filtered BUA 
for each pair of channels 1000 times. If the true correlation exceeded the 
95th percentile for shuffled data a pair of channels was classified as 
significantly correlated.

Fig. 1. Analysing covariance in the change in envelope of beta-BUA within and across basal ganglia structures: Recordings were made with a pair of multi-electrode 
probes either both targeted to the GP or one targeted to the GP and the other to the STN. Either a single probe with two 16 channel shanks (targeted to the GP) or two 
probes each with 16 channels (targeted to the GP and STN) were used. Each shank in both configurations consisted of 16 electrodes arranged in a single vertical plane 
separated by 100 μm. A: The wideband signal recorded from 16 channels on a single recording shank in the GP. The dotted line represents zero for each signal. B: The 
BUA from 16 channels on a single recording shank in GP. The dotted line represents zero for each signal. C: The beta filtered BUA (coloured) and the envelope of this 
signal (black) from 16 channels on a single recording shank in the GP. The dotted line represents zero for each signal. D: The z-scored change in envelope of the beta 
filtered BUA over 50 ms from 16 channels on a single recording shank in the GP. The dotted line represents zero for each signal. E: An exemplary correlation matrix 
from a single recording session showing the correlations between the change in the envelope of beta filtered BUA over 50 ms windows for pairs of channels. The 
channels numbered 1–16 were from probe 1, whereas the channels numbered 17–32 were from probe 2. Channels are numbered by their position on the probe (e.g., 
channels 2 and 3 neighbour each other on probe 1). F: The significantly correlated pairs of channels (yellow) in the correlation matrix E. The main diagonal, which 
displays the correlation of a channel with itself, was displayed as non-significant in matrix F as significant correlations here are not meaningful.

Fig. 2. PCA-ICA was used to identify groups of channels with coordinated changes in the envelope of beta filtered BUA: All data presented here is from a single 
recording session in the GP. A: Exemplary beta-BUA (orange) and beta-envelope (blue) from a single probe channel in the GP. B: Exemplary z-scored change in beta- 
envelope over consecutive 50 ms windows for a single recording (only a section of the recording is shown here for display purposes). C: The correlation matrix of the 
z-scored change in beta envelope recorded over 31 channels in a single recording. All channels here were located in the GP. D: The distribution of eigenvalues from 
PCA applied to the matrix of z-scored changes in beta-envelope under null conditions (with randomly circularly shifted columns). The red line shows the significance 
threshold determined by a percentile cut-off of the circularly shuffled data with Bonferroni correction. E: PCA was applied to the z-scored change in beta-envelope. 
Two principal components were classified as significant here on the basis that their eigenvalues were greater than the 95th percentile (adjusted by the Bonferroni 
correction) of eigenvalues from the circularly shifted data (vertical red line). ICA was then applied to the z-scored change in the envelope of the beta filtered BUA 
projected onto the significant components to identify the assembly patterns of the 2 beta ensembles. F: The assembly patterns of 2 significant beta ensembles 
identified in this single recording session. Each recording channel has a weight in these assembly patterns which represents how large a contribution BUA recorded on 
that channel makes to the identified beta ensemble. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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2.9. Analysis and plotting

Analysis and plotting were carried out using custom written code in 
MATLAB (Mathworks, Natick, MA, USA). Error bars represent standard 
error of the mean (SEM) unless otherwise stated.

3. Results

Our overarching aim was to identify the spatial extent of basal 
ganglia unit activity that was coordinated by pathophysiological beta 
oscillations. Unlike LFPs, background unit activity (BUA), which reflects 
the synchronous spiking of the neural population proximal to the 
recording electrode, is a well spatially localised signal. Background unit 
activity (BUA) was computed from the GP and STN (Fig. 1A, B) of 
anaesthetised, parkinsonian rats (Mallet et al., 2008a; Cagnan et al., 
2014). BUA in lesioned animals had a strong, stable oscillation in beta 
power (Fig. S1). A Hilbert transform was used to extract the envelope of 
the beta filtered BUA (Fig. 1C), the change in the envelope over 50 ms 
windows was then computed (Fig. 1D). This allowed us to detect 
changes in the amplitude of beta oscillations in the firing of neurons in 
the population of neurons proximal to the recording electrode. We 
focused on the correlations between the change in envelope across 
channels rather than the envelope itself, as it allowed us to identify 
groups of channels where the emergence and offset of beta oscillation 

occurred synchronously. Supporting the use of the change in beta en-
velope as the input to the PCA-ICA pipeline, PCA-ICA trained on the raw 
BUA did not result in ensembles which capture beta dynamics (Fig. S2).

We examined the change in beta-envelope over 50 ms as this is the 
approximate period of the beta oscillations observed here (centre fre-
quency: 20.9 Hz ± 2.7 Hz). Moderate pairwise correlations were 
observed between the change in the envelope of beta filtered BUA (in 
channels across the GP and STN (Fig. 1E)). This was particularly the case 
for channels in close proximity, as indicated by the high correlations 
observed around the main diagonal of the correlation matrix. There 
were, also, several significant correlations observed over greater dis-
tances (Fig. 1F), including between channels on different recording 
probes. BUA is a far better localised signal, as compared with monopolar 
LFP, (Fig. S3) so these correlations are unlikely to result from volume 
conduction. This demonstrates beta oscillations emerge in a coordinated 
fashion across channels, including channels that are not immediately 
adjacent or on the same recording probe.

3.1. Synchrony and beta ensembles

We hypothesized that unit activity across the basal ganglia would be 
coordinated by multiple beta ensembles. To test this, we sought to 
identify groups of BUA signals recorded from different probe contacts 
(beta ensembles) that had co-ordinated changes in their oscillation 

Fig. 3. Beta ensembles were mostly spatially contiguous but could be non-contiguous, span shanks or even brain structures. A-E: Assembly patterns with a two-shank 
probe targeted to the GP. Member channels were coloured in red for display purposes. F, G: Assembly patterns with one probe targeted to the GP and another to the 
STN. Member channels were coloured in red for display purposes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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strength. This was achieved using a two-step statistical process, PCA 
followed by independent component analysis (ICA), whereby groups of 
channels with correlated changes in beta envelope (Fig. 2) could be 
identified. 85 such significant beta ensembles were identified over 45 
recordings in 15 animals, each described by a weight vector containing 
the contribution of each channel (Fig. 2F) to the beta ensemble. Sup-
porting the likely small contribution of volume conduction, beta en-
sembles could be detected even when channels were excluded to create a 
minimum spacing of 200 and 300 μm (Fig. S4A, B). The number of en-
sembles per channel was no different even as the spacing between 
channels increased (Fig. S4C).

Channels with an absolute weight greater than the 80th percentile of 
the weight vector were classified as members of the beta ensemble 
(Fig. 3). In total, 85 beta ensembles were identified as significant on the 
basis of the magnitude of eigenvalues from PCA. In two recordings, the 
fastICA algorithm did not converge so these were excluded from analysis 
leaving 81 beta ensembles. Most recordings had probes only targeted to 
the GP (38/45) and as such 75 of the 81 ensembles were made up of 
channels in the GP alone. 6 of the 10 ensembles identified on the 
recording days with an STN recording probe contained at least 1 STN 
member, with 2 beta ensembles containing member channels both in the 
GP and STN. Member channels were generally clustered in space, 
although in some instances, member channels were separated by large 
distances (e.g., Fig. 3B, E and G). The majority of ensembles (57/81) 
were made up of member channels that were spatially contiguous. 
However, some examples (13/81) of ensembles with non-spatially 
contiguous members within a single probe could be identified, as 
could examples of ensembles which spanned the two shanks of the 
recording probe (12/81).

Strikingly, two beta ensembles were identified in most recordings 
(Fig. 4A), confirming that beta oscillations are not a completely unified 
process, but occur in spatially segregated ensembles. The number of 
channels within the GP or STN varied considerably across recordings 
(Fig. 4B), as did the number of member channels (Fig. 4C). For some 
analyses, the ensembles were discretised by taking those channels with 
the greatest contributions to an ensemble. This most frequently resulted 
in 2 or 3 member channels (Fig. 4C) although some were made up of 
larger numbers (up to 6). There were some instances were only a single 
member channel could be identified for an ensemble. This was a result of 
a short falling of using a percentile-based cut-off to define assembly 
membership. In recordings with small numbers of channels (i.e., less 
than 10), an 80th percentile cut-off did not consistently identify 2 or 
more sufficiently high weighted channels. None the less, these ensem-
bles still represent a pattern of statistically significant coordination in 
the change in the envelope of beta filtered BUA, which undoubtedly 
involves the correlated activity of at least 2 channels. Member channels 
tended to be clustered spatially (Fig. 4D), with most member channels 
being separated by 500 μm or less.

Post-hoc correlation of the change in envelope of beta filtered BUA 
was greater between pairs of member channels than pairs of non- 
member channels (Fig. 4E), verifying that our method identified chan-
nels with coordinated beta onset and offset. This was still the case when 
comparing correlations between channels separated by the same dis-
tance (Fig. 4F), so this effect is not solely driven by member channels 
being more proximal than non-members. Some highly weighted chan-
nels had a negative weighting in the assembly pattern, indicating that 
power changes in that channel were in the opposite direction to other 
channels. However, these instances were rare (9/228 channels that were 

Fig. 4. Beta ensembles were consistently identifiable across recordings and were made up of spatially clustered channels. A: A frequency histogram of the number of 
ensembles detected for each recording. B: A frequency histogram of the number of recording channels present in target structures (GP and STN) per recording. C: The 
frequency histogram of the number of member channels for each ensemble. D: The probability density histogram of the distance between pairs of member (blue) and 
non-member (red) channels on each recording probe individually. E: The average Pearson’s R for changes in the envelope of beta filtered BUA was significantly 
greater for pairs of member channels than for pairs of non-member channels (Wilcoxon signed-rank test, p = 7.7 × 10− 14). F: The average Pearson’s R was greater 
between pairs of member channels (blue) than pairs of non-member channels (orange), separated by 100, 200, 300 or 400 μm (Wilcoxon rank sum test, p < 0.05 for 
100, 200, 300 and 400 μm). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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assembly members) so were excluded from the analysis. Whilst not 
mathematically prohibited by the PCA-ICA pipeline, only a small mi-
nority of channels were members of 2 or more ensembles (5/219 posi-
tively weighted members). Due to the relatively small number of STN 
recordings, we limited subsequent analysis to sessions where recordings 
were only made in the GP (71 beta ensembles) to simplify interpretation.

The member channels identified in all analysis up to this point were 
identified by changes in the amplitude of beta envelope. We hypothe-
sized that phase-synchrony between members of beta ensembles would 
also be higher than non-members, which would indicate that they are 
also coordinated on the timescale of individual cycles. To address this, 
we explored cross-correlations between unfiltered BUAs calculated be-
tween ensemble members and non-members. If correlations in the beta 
power between channels predicted beta synchrony, beta fluctuations 
should emerge through summation, without the need to filter (see 
Cagnan et al., 2019). Cross-correlations between raw BUA showed a 
peak at 0 ms lag and broader peaks at ±50 ms (Fig. 5A). The cross- 
correlation between members was greater than that between non- 
members at lags of 0 ms and lags of multiples of 50 ms corresponding 
to beta-frequency correlation (Fig. 5A), confirming that there is greater 
beta phase-synchronisation between member channels.

The cross correlation at 0 ms in raw BUA between pairs of member 
and pairs of non-member channels fell with increasing distance (Fig. 5B) 
but was greater between member channels than between non-members 
even after taking distance into account (Fig. 5B). Equally, the trough at 
25 ms was lower (Fig. 5C) and the peak at 50 ms was higher (Fig. 5D) in 

member channels as compared to non-members after controlling for the 
distance between channels. This indicates that differences in phase- 
synchrony between members and non-members is not simply a func-
tion of the average distance between channels.

3.2. Beta ensembles were preferentially observed in the beta-band

Given that filtering is a key part of the signal processing pipeline, it is 
possible that the results described thus far were due to covariance in 
wideband, rather than beta band amplitude. To address this, we 
compared the core analytical variables to those computed on other 
frequency bands. This was carried out by filtering the raw BUA in around 
+/− 5 Hz of increasing centre frequencies. The period that the change in 
envelope was calculated over was determined by the centre frequency of 
the oscillation. For instance, for a centre frequency of 40 Hz, the period 
the change in envelope was considered over would be 25 ms (1 / 40 Hz). 
The normalized variance explained by the first principal component was 
greater in the beta frequency range than in lower or higher frequency 
ranges (Fig. 6A), with a peak at ~20 Hz. This was also true of the mean 
of the normalized variance explained by the first 3 principal components 
(Fig. 6B).

Next, we considered the coactivity across a number of frequency 
bands. To achieve this, we filtered raw-BUA in the theta (6-10 Hz), beta 
(15-25 Hz), low gamma (35-60 Hz) and high gamma (60-90 Hz) band. 
Again, the period that the change in envelope was considered over was 
determined by the centre frequency of the oscillation (e.g., for the theta 

Fig. 5. Members of beta ensembles showed correlated changes in the envelope of beta filtered BUA and increased beta band coherence. Cross correlation was 
normalized here such that the autocorrelation at lag 0 was 1. A: The normalized cross correlation between pairs of member channels (blue), pairs of non-member 
channels (orange) and pairs of member and non-member channels (green), at lags of -250 ms to 250 ms. Orange markers above the graph show significance between 
the cross correlation of pairs of members and pairs of non-member channels. Green markers above the graph show significance between the cross correlation of pairs 
of members and pairs of member and non-member channels. Significance was determined with the Wilcoxon rank sum test (member-member pairs vs non-member- 
non-member pairs) and the Wilcoxon signed-rank test (member-member pairs vs member-non-member pairs) using false discovery rate statistics to control for the 
multiple time points compared. B: The normalized cross correlation at a 0 ms lag between pairs of member channels (blue) was greater than that for pairs of non- 
member channels (orange) when separated by the distance between channels (Wilcoxon rank sum test, p < 0.003 for 100, 200 and 300 μm). C:The normalized cross 
correlation at a 25 ms lag between pairs of member channels (blue) was more negative than that of pairs of non-member channels (orange) when separated by the 
distance between channels (Wilcoxon rank sum test, p < 0.004 for 100, 200 and 300 μm). D: The normalized cross correlation at a 50 ms lag between pairs of member 
channels (blue) was greater than that for pairs of non-member channels (orange) when separated by the distance between channels (Wilcoxon rank sum test, p <
0.006 for 100, 200 and 300 μm). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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band we considered the change in envelope over 125 ms, whereas for 
high gamma the change in envelope was calculated over 13 ms). The 
eigenvalue of the first principal component (Fig. 6C) and mean of the 
eigenvalues for the first three principal components (Fig. 6D) was 
significantly greater for beta frequency than theta or low or high gamma 
filtered BUA. In addition, significantly more beta ensembles could be 
identified in the beta band than for theta or low or high gamma bands 
(Fig. 6E). Therefore, oscillations at beta frequency led to more spatially 
coordinated neuronal activity than oscillations at other frequency bands 
in parkinsonian animals. Equally, no beta-ensembles could be detected 
in unlesioned controls, where there were no strong beta oscillations 
(Fig. S5).

3.3. Spatially coordinated beta emergence across time

We next sought to understand the changes in instantaneous beta 
amplitude and phase sychrony across space during spatially coordinated 
beta emergence and offset. The expression strength of coactivity pat-
terns was computed (Fig. 7A). Peaks in expression strength (beta 
ensemble activations) were primarily driven by large co-ordinated 
changes in the envelope of beta-BUA in at least a pair of channels 
with high contributions to the beta ensemble (Fig. 7B-C). The low stable 
baseline punctuated by large peaks reflected that much of the coordi-
nated change in beta envelopes occurred as brief, transient events. 
Whilst these activation events were solely identified on the basis of 
changes in envelope, they were also accompanied by large changes in 
phase synchrony between member channels (Fig. 7D-E). These 

activations were significantly more frequent in true beta ensembles than 
in pseudo-beta ensembles formed by circularly shifting the assembly 
pattern for each beta ensemble by a random amount (Fig. 7F-H). This 
difference in activation rate between beta ensembles and pseudo-beta 
ensembles became increasingly pronounced as the threshold for acti-
vation was increased. Taken together, these findings confirm that 
coactivity in the emergence of beta oscillations is specific to the iden-
tified beta ensembles and is accompanied by an increase in phase 
synchrony.

3.4. Subcortical ensembles and their relationship with respect to ECoG

Cortical beta-bursts have been associated with increases in beta en-
velope in the GP and STN and increased phase synchrony between basal 
ganglia structures and the cortex (Cagnan et al., 2019). Previous work 
has probed the relationship between ECoG and the basal ganglia at a 
brain structure-by-structure level. We aimed to test whether beta neural 
populations in the GP that showed coordinated beta oscillation emer-
gence had a different relationship with cortical beta oscillations to non- 
members. Both member and non-member channels had a large rise in 
their coherence with ECoG at ~15–30 Hz, which peaked at ~20.5 Hz. 
This peak in coherence was larger with BUA channels that were 
ensemble members (Fig. 8A). Ensemble activations were divided by 
whether they represented a coordinated increase or decrease in the 
envelope of beta-BUA. Ensemble activations were associated with 
moderate changes in the envelope of beta-ECoG (Fig. 8B, C). This 
moderate amplitude likely reflects that some, but not all, ensemble 

Fig. 6. Coordinated oscillation in BUA was specific to the beta frequency band: A and B: The largest (A) and the average of the 3 largest (B) normalized eigenvalues 
from the PCA of the change in z-scored envelope of BUA filtered at ±5 Hz of the centre frequency. C, D and E: The change in envelope of beta oscillations (15-25 Hz) 
was compared to theta (6-10 Hz), low (35–60 Hz) and high (60–90 Hz) gamma in terms of the size of the first eigenvalue (C, Wilcoxon signed-rank test, beta-theta: p 
< 10− 6, beta-low gamma: p < 10− 6, beta-high gamma: p < 10− 7), the average of the first 3 eigenvalues (D, Wilcoxon signed-rank test, beta-theta: p < 10− 6, beta-low 
gamma: p < 10− 6, beta-high gamma: p < 10− 7), and the number of ensembles identified (E, Sign test, beta-theta: p < 10− 7, beta-low gamma: p < 10− 4, beta-high 
gamma: p < 10− 6).
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activations are associated with beta bursts in the cortex. Equally, the 
change in PSI across ensemble activations between beta-ECoG and beta- 
BUA in member channels was greater than for channels that were not 
members of the activating beta ensemble (Fig. 8D, E). Overall, mem-
bership of a beta ensemble predicted that a given channel was more 
strongly related to cortical beta.

4. Discussion

Abnormally sustained, transient increases in the power of beta os-
cillations are markers of impaired network activity in the parkinsonian 
brain. How these transient increases in beta synchrony manifest on the 
spatial scale, however, is less clear. Here we provide a novel application 
of a well-established analytical technique to define the nature of spatial 
synchronisation in multichannel unit recordings from parkinsonian rats. 

The results demonstrate that the spiking of multiple, independent en-
sembles of neurons can be distinctly and transiently synchronized by 
beta oscillations within the cortico-basal ganglia network (Fig. 9). These 
findings have potentially important implications for the interpretation 
of beta oscillations as a biomarker of pathophysiology in PD and its 
treatment with DBS.

4.1. Anatomical properties of cortico-basal ganglia circuits and beta 
oscillations

An influential hypothesis as to the pathophysiological mechanism in 
PD is that the functional segregation of cortico-basal ganglia loops is 
compromised (Filion et al., 1988; Tremblay et al., 1989; Boraud et al., 
2000; Leblois et al., 2006), preventing the normal functioning of those 
circuits. Cortico-basal ganglia circuits are arranged into information 

Fig. 7. Coactive changes in beta envelope in beta ensembles were associated with increases in phase synchrony specifically in member channels: A: The expression 
strength of the coactivity patterns of 3 ensembles (identified in a single recording) over time. B and C: The average beta-envelope triggered by ensemble activations 
(activation threshold = 5), separating activations by whether they were associated with a coordinated increase (B) or decrease (C) in beta envelope. These were 
associated with a larger coordinated increase and decrease in beta-envelope for B and C respectively in member channels of the activating (blue) than non-activating 
(green) ensembles or non-member channels (orange). D and E: The average PSI triggered by ensemble activations (activation threshold = 5), separating activations 
by whether they were associated with a coordinated increase (D) or decrease (E) in beta envelope. These were associated with a larger coordinated increase and 
decrease in PSI for D and E respectively in member channels of the activating (blue) than non-activating (green) ensembles or non-member channels (orange). For 
figs. B, C, D and E periods of significant difference are marked above the graph. The orange marker signifies periods of significant difference between members of the 
activating ensemble (blue) and non-member channels (orange). The green marker signifies periods of significant differences between members of activating (blue) 
and non-activating (green) ensembles. Significance was determined with the Wilcoxon rank sum test using false discovery rate statistics to control for the multiple 
time points compared. F, G and H: The frequency of activations was greater in ensembles compared with circularly shifted ensembles, with an activation threshold of 
5 (Wilcoxon signed-rank test, p = 1.7 × 10− 10), 7.5 (Wilcoxon signed-rank test, p = 8.8 × 10− 11) and 10 (Wilcoxon signed-rank test, p = 2.5 × 10− 10) respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Beta ensemble activations were associated with changes in both the instantaneous power of cortical beta and the phase synchrony in the beta-band between 
the beta ensemble and the cortex: A: The peak coherence of the BUA of member channels (blue) with ECoG was greater than that of non-member channels (orange) 
(Wilcoxon rank sum test, p < 0.05). The coherence was calculated between ECoG and BUA sampled at 1000 Hz with a segment length of 1024. B and C: Average beta- 
ECoG envelope triggered by ensemble activations (blue) separating by whether these activations reflected a coordinated increase (B) or decrease (C) in the envelope 
of beta-BUA respectively. Also plotted was the triggered average of beta-ECoG envelope at random time points (orange) separating for whether these random time 
points correspond to a coordinated increase (B) or decrease (C) in the envelope of beta-BUA in the beta ensemble. D and E: PSI between beta-ECoG and beta-BUA 
averaged across ensemble activations in member (blue) and non-member (orange) channels, separating by whether these activations reflected a coordinated increase 
(D) or decrease (E) in the envelope of beta-BUA respectively. B, C, D and E have periods of significant difference between traces displayed with a black marker. 
Significance was determined with the Wilcoxon rank sum test using false discovery rate statistics to control for the multiple time points compared. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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streams that can be broadly divided by cortical inputs to the striatum 
(Alexander et al., 1990). These were traditionally thought to consist of 
3/4 functional subdivisions, but recent studies have shown that in ro-
dents there are 10s–100s of cortico-basal ganglia-thalamic loops in the 
mouse brain (Hunnicutt et al., 2016; Peters et al., 2021). Inputs from 
functionally related cortical areas converge into specific parts of the 
striatum, but these clusters remain segregated in their axonal pro-
jections to the pallidum (Foster et al., 2021). However, there is signifi-
cant convergence of these striatopallidal channels onto the basal ganglia 
output nuclei and the subsequent thalamocortical projection. Overall, 
cortico-basal ganglia circuits are, therefore, partially segregated with 
multiple points of convergence. The expression and propagation of beta 
oscillations will be partly defined by these anatomical features. As 
previously suggested, the spatial hypersynchronization of beta oscilla-
tions could bind the activity of neurons across usually segregated loops, 
constraining the computation space (Brittain et al., 2014; Cagnan et al., 
2015). To our knowledge, however, the spatial extent of such hyper-
synchronization has not been systematically quantified. By providing an 
approach to quantify the dependence of beta oscillations across space, 
we aimed to provide novel insights into this issue.

4.2. Defining spatial synchronisation of beta oscillations at the neuronal 
level

We analysed the temporal correlation of the change in beta 

amplitude of BUA signals recorded from equally spaced recording 
channels on silicon probes. We chose the power of the BUA as our pri-
mary signal for analysis because it corresponds to the level of beta 
synchronisation of spiking in a small pool of neurons around the elec-
trode (Sharott et al., 2017; Cagnan et al., 2019). This is a useful signal 
given that transient increases in beta synchronisation appear to be a key 
pathophysiological feature of the disease (Tinkhauser et al., 2017a; 
Cagnan et al., 2019; Baaske et al., 2020). When the fluctuations in BUA 
beta amplitude are positively correlated across electrode channels, it 
suggests that the same process is coordinating local synchronisation 
across those areas. For analysis of such temporal correlation to be 
meaningful, it is important that the synchronisation of signals results 
from neuronal processes, rather than passive ones such as volume con-
duction. LFPs are therefore suboptimal for this purpose, as re- 
referencing cannot guarantee independence and more complex signal 
processing complicates interpretation. In contrast, the change in enve-
lope of beta-BUA signals have a high level of independence without 
further referencing, with even adjacent channels outside of the beta 
ensembles explaining an average of only approximately 1 % of each 
other’s variance. Thus, when fluctuations in the envelope of beta-BUA 
are significantly correlated, it is likely to be driven by neuronal activity.

To quantify these correlations across every channel in a given 
recording, we employed a PCA/ICA framework that is well-established 
for the study of single units (Peyrache et al., 2010; Lopes-dos-Santos 
et al., 2011; van de Ven et al., 2016; Lopes-dos-Santos et al., 2013). The 

Fig. 9. Neurons across the GP and STN form distinct beta ensembles which each have coordinated changes in the envelope of their beta oscillations. Beta oscillations 
evolve synchronously across the neural population that makes up a beta ensemble, which can form within or across anatomical structures. As coordinated beta 
activity is accompanied by an increase in beta phase synchrony in the neurons that make up beta ensembles, they likely indicate dynamic synchronisation of spike 
timing across large spatial extents of the basal ganglia.
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key feature of this method is that it defines groups of channels with 
correlated changes in the amplitude of beta oscillations in their spiking 
activity that are otherwise independent of each other and is agnostic to 
distance. Interestingly, the expression strength of assembly patterns 
tended to have a stable baseline with transient peaks. This mirrors 
findings from ensembles identified in single units, where again coordi-
nated firing is dominated by short duration events (Lopes-dos-Santos 
et al., 2013; van de Ven et al., 2016). These peaks likely represent co-
ordinated beta bursts across beta ensembles. In the majority of re-
cordings, this method detected more than one ensemble. This result 
suggests that beta synchronisation is not a homogenous process across 
circuits, but there are multiple, distinct beta “activities” that can couple 
across specific neuronal populations independently of each other. This 
highlights the complementarity of our approach too more traditional 
pairwise methods, which do not lend themselves to finding such inde-
pendent groups of channels. In our experimental set-up, we cannot 
identify the substrate for such independent beta activities, but it seems 
likely that they could be the result of the anatomical segregation of basal 
ganglia circuits described above. Importantly, many ensembles were not 
spatially contiguous and/or spanned the pallidum and STN. Ensembles 
may therefore have represented pools of neurons connected by common 
inputs, rather than simply being in direct proximity to each other.

4.3. Physiological properties of beta ensembles

The ensembles defined by our analysis were based on fluctuations in 
beta amplitude, but were accompanied by enhanced beta phase syn-
chronisation with other ensemble members and the cortex. This beta 
synchronisation is likely to be the cause, rather than effect of coordi-
nated fluctuations in beta power across channels. We have already 
described the transient increase in phase locking of individual units/ 
BUA channels during cortical beta bursts (Cagnan et al., 2019). Here, we 
extend those observations to show that cortical beta bursts are accom-
panied by transient beta synchronisation across spatially distinct pop-
ulations of basal ganglia neurons. In addition, the raw BUAs (i.e. not 
beta filtered) of member channels were around 100 % more correlated 
with each other at zero lag than with non-members. This indicates that 
groups of neurons that were spatially synchronized on the scale of beta 
oscillations were also far more likely to fire synchronous spikes within a 
few milliseconds of each other (Buzsaki, 2010). This finding is impor-
tant, as it indicates that ensembles will produce highly synchronized 
outputs that are likely to propagate to, and temporally summate within, 
downstream targets. More speculatively, correlations on these time 
scales could contribute to maladaptive plasticity in the parkinsonian 
brain (Chu et al., 2015). On a technical level, using phase- 
synchronisation or cross correlation between channels to define en-
sembles may have led to similar results as using beta amplitude. How-
ever, changes in beta power provides a more straightforward signal for 
ICA/PCA and can readily be applied in other contexts for future studies. 
More importantly, our method provided an effective way of identifying 
spatially distributed channels that shared features relating to oscillation 
and synchronisation.

One potential caveat of our findings is the inability to fully distin-
guish two possible mechanisms through which the coordination re-
ported here could arise. Mechanism 1: Beta ensembles reflect the 
coordinated emergence of beta oscillation in spiking activity of spatial 
extents of the basal ganglia made up of neurons proximal to each of the 
recording contacts. This is the interpretation we think is most likely. 
Mechanism 2: That beta ensembles are driven by large oscillations in the 
spiking output of focal neural ensembles that are detectable across 
multiple channels. In mechanism 2, PCA-ICA could be thought of as 
identifying ‘sources’ of beta oscillations. In this interpretation, several 
such distinct ‘sources’ can be identified within and across anatomical 
structures. Therefore, regardless which of the two mechanisms outlined 
above are at play, this paper provides evidence that there are neural 
populations within the basal ganglia with distinct emergence in relation 

to beta activity, be this spatial extents of the basal ganglia or more focal 
neural populations with oscillations large enough to be recorded across 
multiple contacts. In our opinion, Mechanism 1 remains the more likely 
of the two interpretations, as members of beta assemblies are more 
correlated even after controlling for distance. These correlations were 
seen up to 400 μm, a distance where it is highly unlikely the same 
spiking activity can be recorded. Assembly patterns identified could also 
be spatially non-contiguous, span recording probes and even anatomical 
structures.

4.4. Relevance to PD pathophysiology and DBS

As the recordings used here were made in anaesthetized rats, we 
cannot guarantee the generalisability of our findings to the awake state. 
There is a general tendency of anaesthesia to synchronise neural activity 
across the forebrain (Steriade, 2000), this could increase the synchro-
nisation of beta ensembles as compared to awake animals. This is 
mitigated in part by the fact recordings were made in “cortical activa-
tion,” a state that resembles the awake brain more that the sleep-like 
slow-wave state (Mallet et al., 2008b; Mallet et al., 2008c). Beta oscil-
lations under this anaesthetic protocol also generally have a lower 
centre frequency, which is more stable (see Fig. S1) than those recorded 
in awake animals (Delaville et al., 2015; Brazhnik et al., 2016; McNa-
mara et al., 2022). However, given the general agreement between the 
properties of parkinsonian oscillations across the cortico-basal ganglia 
network in anaesthetised and awake rats (e.g. Sharott et al., 2005; Mallet 
et al., 2008c for STN), it seems reasonable to assume that the core ob-
servations here may also translate to awake animals. Taking the caveats 
into account, the principles identified here raise specific hypotheses as 
to how spatial synchronisation of beta activities are related to Parkin-
sonian symptoms. Notably, it seems reasonable to speculate that the 
expression of ensembles would change during movement and/or dopa-
mine replacement. Given that beta synchronisation is generally reduced 
during these conditions (Hammond et al., 2007), we hypothesise that 
ensemble expression would decrease and/or ensembles would decrease 
in size/become more segregated. High-density recordings in awake an-
imals would provide and ideal experimental set-up to test these 
hypotheses.

Beta oscillations, quantified in a variety of ways, are most strongly 
related to akinetic/rigid symptoms (Kühn et al., 2005; Sharott et al., 
2014; Neumann et al., 2016). Within each patient, the severity of aki-
netic rigid symptoms often varies between upper and lower body and 
individual limbs. Our findings suggest that independently synchronized 
ensembles could underlie this variance and provide a mechanism 
through which different limbs could become bradykinetic at a given 
time. This naturally leads to the hypothesis that dopaminergic medica-
tion and the consequent reduction in akinetic/rigid symptoms would 
lead to smaller and/or more spatially segregated ensembles. Performing 
similar experiments in awake animals with silicon probes would allow 
this hypothesis to be fully tested.

Adaptive DBS targeting beta bursts has been found to outperform 
continuous stimulation in patients with Parkinson’s disease (Little et al., 
2013). This allows large reductions in the electrical energy that must be 
delivered to control symptoms, while reducing the rate of battery 
depletion and the severity of side effects (Little et al., 2013). Stimulation 
is typically delivered with a single stimulating electrode within a single 
brain structure (i.e., STN or GP, not both). Given that spatially clustered 
subregions in the basal ganglia show coordinated changes in the enve-
lope of beta activity, there may also be value to spatial targeting for 
adaptive DBS protocols. Such a stimulation strategy was pioneered by 
Tass and colleagues, where electrical stimulation has been delivered 
from different contacts of a stimulating electrode in an open loop fashion 
to reset the coordinated neural activity observed in Parkinsonism (Tass, 
2003; Tass et al., 2012). The main advantages of coordinated reset over 
other adaptive stimulation approaches are long term plastic changes and 
delayed symptom return (Tass et al., 2012). As discussed above, 
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ensembles in our data were synchronized at timescales relevant for the 
induction of plasticity. More targeted interference of such spatiotem-
poral synchronisation thus has the potential to interfere with this pro-
cess and could result in larger long-term effects on symptom expression. 
The use of segmented leads could potentially facilitate such an approach 
(Debove et al., 2023). Future work may focus on combining both 
adaptive stimulation approaches and deliver targeted bursts of stimu-
lation to spatiotemporally distinct pockets of ensemble activity to 
further reinforce the desynchronizing effects of stimulation and poten-
tially induce longer lasting plastic changes.
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